Math 311 Practice Exam 2

1. Compute the curl of the vector field \(\mathbf{F}(r, \phi, \theta) = r \mathbf{e}_{\phi} + \mathbf{e}_{\theta} \) in spherical coordinates.

2. Let \(\mathbf{F} \) be the vector field \(\mathbf{F}(x, y, z) = z^2 \mathbf{i} - \sin y \mathbf{j} + (2xz + 6z^2) \mathbf{k} \).

 a. Determine whether or not \(\mathbf{F} \) is conservative. If it is conservative, find a potential function for \(\mathbf{F} \).

 b. Evaluate \(\int_C \mathbf{F} \cdot d\mathbf{R} \), where \(C \) is the path parameterized by
 \[
 \mathbf{R}(t) = te^{1-t} \mathbf{i} + \frac{\pi}{2} t \mathbf{j} + t^4 \mathbf{k}, \quad 0 \leq t \leq 1.
 \]
 Simplify your answer. (Hint: Try to use your answer from part a. What are the initial and terminal points of the path?)

3. Let \(\mathbf{F} \) be the two dimensional vector field \(\mathbf{F} = \sin x \mathbf{i} - y \cos x \mathbf{j} \).

 a. Show that \(\mathbf{F} \) is solenoidal.

 b. Find a vector potential for \(\mathbf{F} \).

4. Let \(S \) be the portion of the cone \(z^2 = x^2 + y^2 \) lying in the first octant with \(0 \leq z \leq 2 \) and oriented upward (so that \(\mathbf{n} \cdot \mathbf{k} \) is positive). Evaluate \(\oiint_S \mathbf{F} \cdot d\mathbf{S} \), where \(\mathbf{F}(x, y, z) = -y \mathbf{i} + x \mathbf{j} + \mathbf{k} \).

5. Let \(V \) be the domain bounded by the cylinder \(x^2 + y^2 = 4 \) which lies below the plane \(z = 2 + x \) and above the \(z = 0 \) plane. Find the integral of \(f(x, y, z) = x^2 + y^2 \) over \(V \), that is, find
 \[
 \iiint_V x^2 + y^2 \, dV.
 \]
 Show your work.