Math 563, Fall 2016 Assignment 5, due Wednesday, October 26

Hand in the following exercises. Note that there is a difference between an "exercise" and a "problem" in the text, below we refer to the former.

- 1. Stein-Shakarchi, Exercise #2, Chapter 6.
- 2. Stein-Shakarchi, Exercise #3, Chapter 6.
- 3. Stein-Shakarchi, Exercise #32, Chapter 1. (Yes, go back to Chapter 1!)
- 4. Given σ -algebras \mathfrak{M} and \mathfrak{N} defined as collections of subsets in spaces X, Y, respectively. A function $f: X \to Y$ is said to be $(\mathfrak{M}, \mathfrak{N})$ -measurable if $f^{-1}(E) \in \mathfrak{M}$ whenever $E \in \mathfrak{N}$. If X, Y are metric spaces, then f is said to be Borel measurable if it is $(\mathfrak{B}_X, \mathfrak{B}_Y)$ -measurable (with $\mathfrak{B}_X, \mathfrak{B}_Y$ denoting the Borel sets in the respective spaces).
 - (a) Suppose \mathcal{E} is a collection of sets in Y and that \mathcal{N} is the smallest σ -algebra containing \mathcal{E} . Show that f is $(\mathcal{M}, \mathcal{N})$ measurable if and only if $f^{-1}(E) \in \mathcal{M}$ for every $E \in \mathcal{E}$. Hint: show that

$$\widetilde{\mathbb{N}} = \{ E \subset Y : f^{-1}(E) \in \mathcal{M} \}$$

is a σ -algebra.

- (b) Show that any continuous function $f: X \to Y$ is Borel measurable.
- 5. Let $f : [0,1] \to [0,1]$ be the Cantor-Lebesgue function, and define $g : [0,1] \to [0,2]$ by g(x) = x + f(x).
 - (a) Prove that g is a bijection and that $g^{-1}:[0,2] \to [0,1]$ is continuous. Note: you can make quick work of the surjection proof and continuity of the inverse by appealing to topological arguments and Theorem 4.17 in Rudin respectively.
 - (b) Prove that the Cantor set \mathcal{C} satisfies $m(g(\mathcal{C})) = 1$.
 - (c) By a previous exercise, $g(\mathcal{C})$ contains a Lebesgue nonmeasurable set A. Prove that $g^{-1}(A)$ is Lebesgue measurable but not Borel.
 - (d) There exists a Lebesgue measurable function F and a continuous function G such that $F \circ G$ is not Lebesgue measurable.

Reading: Stein and Shakarchi, continue through Chapter 6.

On your own: Stein-Shakarchi, Exercise #1, Chapter 6.