Exercises to hand in:

1. Suppose \(f(x, y) : \mathbb{R}^2 \to \mathbb{R} \) is \(C^2 \) and that \(f_y(0, 0) \neq 0, \) \(f(0, 0) = 0. \)

 (a) Show that there exists a neighborhood \((-\epsilon, \epsilon)\) and a continuously differentiable, real valued function \(\phi \) defined on this set such that \(\phi(0) = 0 \) and \(f(x, \phi(x)) = 0. \)

 (b) Show that the vector \(\langle 1, \phi'(x) \rangle \) is orthogonal to the vector \(\langle f_x(x, \phi(x)), f_y(x, \phi(x)) \rangle \)

 for all \(x \in (-\epsilon, \epsilon). \)

 (c) Now define the map \(F(x, w) = (x + w f_x(x, \phi(x)), \phi(x) + w f_y(x, \phi(x))). \)

 Show that \(F \) is one-to-one in a neighborhood of the origin.

2. Suppose \(F : \Omega \to \mathbb{R}^n \) where \(\Omega \subset \mathbb{R}^{n+m} \) is an open set containing the origin and that \(F \in C^r(\Omega). \) Suppose further that \(F(0) = 0 \) and \(F'(0) \) has full rank, in other words the rank of \(F'(0) \) is \(n. \)

 Without using the rank theorem, show that if \(c \in \mathbb{R}^n \) is sufficiently close to 0, then there exists \((x, y) \in \Omega \) such that \(F(x, y) = c, \) that is, \(F(x, y) = c \) admits a solution.

 (Hint: the inverse function theorem is effective here.)

3. Suppose \(\Omega \subset \mathbb{R}^n \) is a convex open set and \(f : \Omega \to \mathbb{R} \) is such that \((D_1 f)(x) = 0 \) for every \(x \in E. \) Prove that \(f(x) \) depends only on \(x_2, \ldots, x_n. \)

 (This is the first half of \#10 Ch. 9, Rudin. Think about the second half on your own, but you do not need to hand it in.)

4. Rudin, Chapter 9, \# 24

 On your own: Rudin, Chapter 9: \#19 and the following problem:

 Let \(\psi \in C^1(\mathbb{R}^2) \) be a real valued function with nowhere vanishing gradient, \(\psi = \psi(u, v) \) and \(a, b \in \mathbb{R} \) two constants such that

 \[
 a \frac{\partial \psi}{\partial u} + b \frac{\partial \psi}{\partial v} \neq 0
 \]

 1. Show that the equation \(\psi(x + az, y + bz) = 0 \) defines \(z \) implicitly as a function of \((x, y), \) \(z = z(x, y) \in \mathbb{R}. \)

 2. Show that \(a \frac{\partial z}{\partial x} + b \frac{\partial z}{\partial y} = -1 \)

 Reading in Rudin: Chapter 9