Math 510
Assignment 4, due Wednesday, September 28
(Note the unusual due date)

Exercises to hand in:

1. Rudin, Chapter 2, #16
2. Rudin, Chapter 2, #23
3. Rudin, Chapter 2, #29
4. Consider \mathbb{R} as a metric space with the usual metric $d(x, y) = |x - y|$.

 (a) Show that the set $S = [0, 1] \cap \mathbb{Q}$ is not connected in \mathbb{R}.

 (b) Show that the interval $[0, 1]$ is connected in \mathbb{R}.
5. Let A be a closed subset of \mathbb{R}^k and K a compact subset of \mathbb{R}^k with respect to the usual metric. The distance between A and K is defined to be

 \[d(A, K) := \inf \{ |x - y| : x \in A, y \in K \}. \]

 (a) Show that $d(A, K) > 0$ if and only if the sets A and K are disjoint.

 (b) Is the result true if K is only assumed to be closed?

On your own:

1. Determine which of the following sets in \mathbb{R}^2 (with the usual metric) is compact. If any of them is not compact, find the smallest compact set (if it exists) containing the given set.

 (a) $\{(x, y) \in \mathbb{R}^2 : y = \sin(1/x) \text{ for some } x \in (0, 1)\}$

 (b) $\{(x, y) \in \mathbb{R}^2 : |xy| \leq 1\}$

2. Let (X, d) be a metric space. Let E be a nonempty subset of X. Define the distance from $x \in X$ to E by

 \[\rho_E(x) = \inf_{y \in E} d(x, y). \]

 Prove that $\rho_E(x) = 0$ if and only if x belongs to \overline{E} (the closure of E).

Reading: Finish Chapter 2, start Chapter 3