Real Analysis, Spring 2005, Qualifying Exam

Instructions: Complete all problems. Start each problem on a new page, number the pages, and put only your Social Security number on each page. Clear and concise answers with good justification will improve your score.

1. Let \(K \) be a compact metric space with metric \(d \) and let \(f \) be a continuous real-valued function defined on \(K \) (i.e. \(f \in C(K) \)). Prove that the graph of the function \(f \)

\[
\Gamma_f = \{(x, y) : x \in K, y = f(x)\}
\]

is a compact set in the metric space \((K \times \mathbb{R}, \rho)\), where

\[
\rho((x_1, y_1), (x_2, y_2)) = d(x_1, x_2) + |y_1 - y_2|.
\]

2. Let \(f, g \) be real-valued continuous functions defined on the interval \([0, 1]\), i.e. \(f, g \in C[0, 1] \). Consider the uniform metric on \(C[0, 1] \) given by

\[
\rho(f, g) := \sup_{t \in [0,1]} |f(t) - g(t)|.
\]

For \(f \in C[0, 1] \), define \(F(f) \) as the continuous function defined for each \(t \in [0, 1] \) by

\[
F(f)(t) = \int_0^t u f(u)du.
\]

Show that \(F : C[0, 1] \rightarrow C[0, 1] \) is a contraction, i.e.

\[
\rho(F(f), F(g)) \leq \alpha \rho(f, g), \quad f, g \in C[0, 1]
\]

with some \(\alpha \in (0, 1) \). Explain why this implies that the equation

\[
f(t) = \int_0^t u f(u)du, \quad t \in [0, 1]
\]

has a unique solution \(f \in C[0, 1] \).

3. Let \(f \in C[0, 1] \) and suppose \(f(t) > 0 \) for all \(t \in [0, 1] \). Define \(\theta_n > 0 \) by the following equation:

\[
\int_0^{\theta_n} f(x)dx = \frac{1}{n} \int_0^1 f(x)dx.
\]

Find the following limit

\[
\lim_{n \to \infty} n \theta_n.
\]
4. Suppose that \(f \) is differentiable in the closed interval \([a, b]\) and that its second derivative \(f'' \) exists in the open interval \((a, b)\). Suppose also that
\[
f(a) = f(b), \quad f'(a) = f'(b) = 0.
\]
Show that there exist two points \(c_1, c_2 \in (a, b), c_1 \neq c_2 \) such that
\[
f''(c_1) = f''(c_2).
\]

5. Consider the following series
\[
1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} - \frac{1}{8} + \ldots
\]
In other words, the general term is \(-\frac{1}{n}\) if \(n = 2^k \) for some \(k = 1, 2, \ldots \) and its equal to \(\frac{1}{n} \) otherwise. Prove that the series diverges.

6. Prove that in some neighborhood of \((0, 0) \in \mathbb{R}^2\) there exists unique continuously differentiable function \(f \) such that in this neighborhood
\[
x_1 + x_2 + f(x_1, x_2) - \sin(x_1x_2f(x_1, x_2)) = 0.
\]
Find the partial derivatives of the function \(f \) at \((0, 0)\).

Please state carefully any theorem that you use in this exercise and the next.

7. Let \(E \subset \mathbb{R}^3 \) be open, suppose \(u \) and \(v \) are twice continuous differentiable real-valued functions on \(E \), i.e. \(u, v \in C^2(E) \). Let \(\nabla v \) denote the gradient of \(v \), \(\nabla^2 v = \nabla \cdot (\nabla v) = \sum_{i=1}^{3} \frac{\partial^2 v}{\partial x_i^2} \) denote the Laplacian of \(v \).

Assume \(\Omega \) is a closed subset of \(E \) with a positively oriented boundary \(\partial \Omega \), and let \(\mathbf{n} \) denote the outward normal to \(\partial \Omega \).

Prove Green’s identities,
\[
\int_{\Omega} [u \nabla^2 v + (\nabla u) \cdot (\nabla v)] \, dV = \int_{\partial \Omega} (u \nabla v) \cdot \mathbf{n} \, dA,
\]
and
\[
\int_{\Omega} [u \nabla^2 v - v \nabla^2 u] \, dV = \int_{\partial \Omega} (u \nabla v - v \nabla u) \cdot \mathbf{n} \, dA.
\]