1. Let \(A \in \mathbb{R}^{n \times n} \) be an invertible, symmetric positive definite matrix, \(b \in \mathbb{R}^n \). This problem regards the method of steepest descent to find the solution \(x^* \) of \(Ax = b \). Steepest descent is an iterative method that defines a sequence \(x_n \) which converges to the minimizer of the function

\[
\phi(x) = \frac{1}{2} x^T A x - x^T b.
\]

(a) Let \(e(x) = x - x^* \) and \(||x||_A = \sqrt{x^T A x} \), where \(x^* = A^{-1} b \) solves \(Ax = b \). Prove that \(x \) minimizes \(\phi(x) \) if and only if \(x \) minimizes \(||e(x)||_A \), and thus \(x = x^* \), unique.

(b) Derive a formula for \(-\nabla \phi\).

(c) The vector \(-\nabla \phi(x)\) points in the direction of steepest descent of \(\phi \) at \(x \). The method of steepest descent consists of iterating

\[
x_{n+1} = x_n - \alpha_n \nabla \phi(x_n)
\]

starting from an initial guess \(x_0 \). That is, one steps from \(x_n \) to \(x_{n+1} \) by moving along the direction of steepest descent. Determine the optimal step length \(\alpha_n \) that minimizes \(\phi(x_{n+1}) \). Explain why the method always converges to the minimizer \(x^* \) of \(\phi \).

(d) Write down an algorithm for the full steepest descent iteration. There are three operations inside the main loop.

2. Consider a matrix \(A \in \mathbb{C}^{n \times n} \), vector \(x \in \mathbb{C}^n \) with \(x \neq 0 \). The Rayleigh Quotient of \(A \), \(R_A(x) \), is defined as the quantity

\[
R_A(x) = \frac{x^* A x}{x^* x}.
\]

(a) State the definition of a **Hermitian** matrix and characterize its spectrum, eigenvectors and diagonalizability.

(b) Prove that if \(A \) is Hermitian then \(R_A(x) \) is real and

\[
\lambda_1 \leq R_A(x) \leq \lambda_n,
\]

where \(\lambda_1 \) (resp. \(\lambda_n \)) is the least (resp. greatest) eigenvalue of \(A \).

(c) Determine the maximum and minimum values of the ratio

\[
R(x) = \frac{x_1^2 - 2x_1x_2 + 2x_2^2 + x_3^2}{x_1^2 + x_2^2 + 4x_3^2}
\]

by identifying with the Rayleigh quotient of an appropriate Hermitian matrix.
3. (Proof and application of Gershgorin’s theorem.) Let \(A \in \mathbb{R}^{n \times n} \).

(a) Prove: Every eigenvalue of \(A \) lies in at least one of the \(n \) circular disks in the complex plane with centers \(a_{ii} \) and radii \(\sum_{j \neq i}^{n} |a_{ij}| \),

\[
|\lambda - a_{ii}| \leq \sum_{j=1, j \neq i}^{n} |a_{ij}|
\]

(Hint: let \(\lambda \) be an eigenvalue of \(A \), and \(x \) be a corresponding eigenvector with largest entry 1.)

(b) Prove: Moreover, if \(m \) of these disks form a connected domain that is disjoint from the other \(n - m \) disks, then there are precisely \(m \) eigenvalues of \(A \) within this domain. (Hint: Consider the continuous deformation \(C(t) = D + tB \) of \(A \), where \(D = \text{diag}(a_{11}, a_{22}, \ldots, a_{nn}) \) and \(B = A - D \), and use the fact that the eigenvalues of a matrix are continuous functions of its entries.)

(c) Explain why in (a) the deleted absolute row sums can be replaced by the deleted absolute column sums

\[
|\lambda - a_{ii}| \leq \sum_{j=1, j \neq i}^{n} |a_{ji}|
\]

(d) Give estimates based on Gershgorin’s theorem ((a,b) above) for the eigenvalues of

\[
A = (8 1 0; 1 4 \epsilon; 0 1), \quad |\epsilon| < 1
\]

(e) Find a way to establish the tighter bound \(|\lambda_3 - 1| \leq \epsilon^2 \) on the smallest eigenvalue of \(A \). (Hint: consider a diagonal similarity transformation)

(f) Explain why Gershgorin’s theorem implies that \(A = (1 0 -2 0; 0 1 2 0; -4; 1 0 -1 0; 0 5 0 0) \) has at least 2 real roots.

4. Consider a matrix \(A \in \mathbb{C}^{n \times n} \).

(a) Define the spectral radius, \(\rho(A) \) and the matrix norms \(||A||_k \), \(k = 1, 2, \infty \).

(b) Show that \(\rho(A) \leq ||A|| \) where ||...|| is any matrix norm induced by a vector norm.

(c) Show that

\[
||A||_2^2 = \rho(A^*A) = \sigma_1^2
\]

where \(\sigma_1 \) is the largest singular value of \(A \).

(d) Show that

\[
||A||_2^2 \leq ||A||_1 ||A||_\infty .
\]