Algebra Qualifying Exam

January 2006

Do the following 7 problems. Show all your work and explain all steps in a proof or derivation.

1. Let $Q = \{ \pm 1, \pm i, \pm j, \pm k \}$ be the 8-element group generated by quaternionic units with the usual quaternionic relations:

 \[i^2 = j^2 = k^2 = -1, \quad ij = -ji = k. \]

Let D_4 be the 8-element dihedral group generated by a, b with relations

\[a^4 = 1, \quad a^k \neq 1 \text{ if } 0 < k < 4, \quad b^2 = 1, \quad ba = a^{-1}b. \]

Is D_4 isomorphic to Q? Prove your answer. (10 pts)

2. Consider the system of equations

\[x + y + z = 0, \quad x + 3y + 4z = 0. \]

Show that the integer solutions of this system form a group isomorphic to \mathbb{Z}. (5 pts)

3. Determine all Abelian groups of order 36 up to isomorphism. (15 pts)

 a) Give the decomposition of each group in terms of invariant factors m_1, \ldots, m_t satisfying $m_1 | m_2 | \cdots | m_t$ as

 \[G = \mathbb{Z}_{m_1} \oplus \cdots \oplus \mathbb{Z}_{m_t}. \]

 b) Give the decomposition of each group in terms of elementary divisors $p_1^{s_1}, \ldots, p_r^{s_r}$ with p_i prime, as

 \[G = \mathbb{Z}_{p_1^{s_1}} \oplus \cdots \oplus \mathbb{Z}_{p_r^{s_r}}. \]

 c) Give the isomorphism between the groups listed in a) with those listed in b).

4. Prove that any group of order 18 is solvable. (10 pts)

5. Let V be a real finite-dimensional vector space with a positive definite inner product $\langle \cdot, \cdot \rangle$. Let $L : V \to \mathbb{R}$ be a linear functional on V. Show that (10 pts)

 \[\exists \bar{h} \in V \text{ such that } L(\bar{x}) - \langle \bar{x}, \bar{h} \rangle, \quad \bar{x} \in V. \]

6. Let R be a commutative ring with unity. Show that an element in R is nilpotent if and only if it belongs to every prime ideal of R. (10 pts)

7. Let E be a splitting field of the polynomial $x^5 - 2$ over the rationals \mathbb{Q}. Find the Galois group of E/\mathbb{Q}. (10 pts)