Algebra Qualifying Exam

August 2005

Do the following 8 problems. Show all your work and explain all steps in a proof or derivation.

1. Let p be a prime and let G be a group with order $G = p^n$. Prove that the center of G is non-trivial, i.e., prove that there is an element $z \in G$ with $z \neq e$ and such that $gz = zg$ for all $g \in G$.

2. Let R be a ring and $I \subset R$ an ideal. Suppose that $a = b \text{ mod } I$ and $c = d \text{ mod } I$.

 (i) Show that $a + c \equiv b + d \text{ mod } I$.

 (ii) Show that $ac - bd \text{ mod } I$.

3. Show that the matrices

 $$
 \begin{pmatrix}
 1 & 1 & 0 \\
 0 & 1 & 0 \\
 0 & 1 & 1
 \end{pmatrix}
 \quad \text{and} \quad
 \begin{pmatrix}
 1 & 1 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & 1
 \end{pmatrix}
 $$

 are similar over the rationals \mathbb{Q}.

4. Let $0 \longrightarrow A \overset{f}{\longrightarrow} B \overset{g}{\longrightarrow} C \longrightarrow 0$ be an exact sequence of modules over a commutative ring R. Show that if C is a free R module, then the exact sequence splits.

5. Let A, B be any two endomorphisms of a vector space V over \mathbb{R}, such that

 $$A \circ B - B \circ A = Id,$$

 where Id is the identity endomorphism. Show that V is infinite dimensional.

6. Show that no group of order 48 is simple.

7. Consider the ring $\mathbb{Z}[\sqrt{-5}]$.

 (i) Find all the units in $\mathbb{Z}[\sqrt{-5}]$.

 (ii) Show that $\mathbb{Z}[\sqrt{-5}]$ is an integral domain but not a Unique Factorization Domain (UFD).

8. Let \mathbb{Z} be the ring of integers and \mathbb{Q} the field of rational numbers. Prove that

 $$\left(\mathbb{Z}/7\mathbb{Z}, \otimes_{\mathbb{Z}} \mathbb{Q} - 0 \right).$$