ALGEBRA QUALIFIER EXAM

There are 10 problems. Each problem is worth 10 points.
1. Let G be a subgroup of the additive group \mathbb{R} of all real numbers. Assume G contains no positive element less than 10^{-2002}.
2. Let G and H be finite groups of coprime orders. Prove that any homomorphism from G to H is trivial.
3. Prove that the symmetric group S_4 is solvable.
4. Compute the center of the group of all invertible $n \times n$ matrices with real coefficients.
5. Show that the group defined by generators a, b and relations $a^2 = b^3 = e$, $ab = b^2a$ has 6 elements.
6. Prove that if M is a maximal ideal in a ring R then R/M is a field.
7. Prove that if R_1 and R_2 are two rings and P is a prime ideal in $R_1 \times R_2$ then either $P = P_1 \times R_2$ or $P = R_1 \times P_2$, where P_i is a prime ideal in R_i.
8. Prove that $\mathbb{Z}[\sqrt{-1}]$ is a unique factorisation domain.
9. Prove that if \(p \) is a prime number of the form \(p = 4k + 1 \) then the polynomial \(t^2 + 1 \) is reducible in \(\mathbf{F}_p[t] \).
10. Prove that the polynomial $t^4 + t + 1$ is irreducible in $\mathbb{Q}[t]$.