REVIEW II

1.

Problem 1. Compute the ranks of the following matrices:

(a)	$A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 3 & 1 \\ 0 & 0 & 0 \end{bmatrix}$
(b)	$B = \left[\begin{array}{rrrr} 1 & 1 & 1 & 0 \\ 0 & 1 & 3 & 0 \\ 1 & 1 & 1 & 0 \end{array} \right]$
(1)	$C = \left[\begin{array}{rrrr} 0 & 1 & 1 & 1 \\ 0 & 1 & 3 & 0 \\ 0 & 1 & 1 & 1 \end{array} \right]$
(d)	$D = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \\ 2 & 0 & 2 \\ 3 & 0 & 3 \end{bmatrix}$
	2.

Problem 2. Suppose *V* is the vector space of all sequences that repeat every second term, and consider the ordered basis $\mathcal{B} = [b^{(1)}, b^{(2)}]$ with

$$b^{(1)} = (1, 2, 1, 2, 1, 2, 1, 2, 1, 2, ...)$$

and

 $b^{(2)} = (2, 2, 2, 2, 2, 2, 2, 2, 2, 2, ...).$

What is the coordinate vector, with respect to \mathcal{B} , of each of the following:

(a)

(b) $c = (2, 4, 2, 4, 2, 4, \ldots)$ $d = (0, 0, 0, 0, 0, 0, \ldots)$ $c = (0, 1, 0, 1, 0, 1, \ldots)$

Problem 3.

(a) Find all solutions to $r \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix} + s \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix} + t \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}.$ (b) Find all solutions to $r \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix} + s \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix} + t \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}.$ (c) Is $\left\{ \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \right\}$ the basis of some subspace of $\mathbb{R}^{2,2}$?

4.

Problem 4. Suppose $T: V \to \mathbb{R}^3$ is linear and that

$$T(\mathbf{v}_1) = \begin{bmatrix} 1\\2\\1 \end{bmatrix},$$
$$T(\mathbf{v}_2) = \begin{bmatrix} 0\\2\\0 \end{bmatrix},$$

and

$$T(\mathbf{v}_3) = \begin{bmatrix} 1\\1\\1 \end{bmatrix}.$$

- (a) What is $T(\mathbf{v}_1 + \mathbf{v}\mathbf{s}_3)$?
- (b) What is $T(4\mathbf{v}_3)$?
- (c) Assuming that $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are linearly independent, find a vector \mathbf{x} other than 0 so that $T(\mathbf{x}) = 0$.

5.

Problem 5. Suppose $T : V \to W$ is a linear transformation and that $\mathcal{B} = [\mathbf{b}_1, \mathbf{b}_2]$ is an ordered basis for V and that $\mathcal{C} = [\mathbf{c}_1, \mathbf{c}_2, \mathbf{c}_3]$ is an ordered basis for V. Suppose the matrix representing T relative to $\mathcal{B} - \mathcal{C}$ is

$$A = \left[\begin{array}{rrr} 1 & 0\\ 2 & 1\\ 2 & 0 \end{array} \right].$$

- (a) What is the dimension of V?
- (b) What is $T(\mathbf{b}_1)$?

(c) If v has \mathcal{B} -coordinates

$$\begin{bmatrix} 1\\ 4 \end{bmatrix}$$
,

what are the C-coordinates of $T(\mathbf{v})$?

6.

Problem 6. For each matrix called *A*, find a basis for N(A) and col(A).

(a) $A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ (b) $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ (c) $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 1 & 2 \end{bmatrix}.$