REVIEW II

1.

Problem 1. Compute the ranks of the following matrices:
(a)

$$
A=\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 1 \\
1 & 3 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

(b)

$$
B=\left[\begin{array}{llll}
1 & 1 & 1 & 0 \\
0 & 1 & 3 & 0 \\
1 & 1 & 1 & 0
\end{array}\right]
$$

(c)

$$
C=\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
0 & 1 & 3 & 0 \\
0 & 1 & 1 & 1
\end{array}\right]
$$

(d)

$$
D=\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 0 & 1 \\
2 & 0 & 2 \\
3 & 0 & 3
\end{array}\right]
$$

2.

Problem 2. Suppose V is the vector space of all sequences that repeat every second term, and consider the ordered basis $\mathcal{B}=\left[b^{(1)}, b^{(2)}\right]$ with

$$
b^{(1)}=(1,2,1,2,1,2,1,2,1,2 \ldots)
$$

and

$$
b^{(2)}=(2,2,2,2,2,2,2,2,2,2 \ldots)
$$

What is the coordinate vector, with respect to \mathcal{B}, of each of the following:
(a)

$$
c=(2,4,2,4,2,4, \ldots)
$$

(b)

$$
\begin{aligned}
d & =(0,0,0,0,0,0, \ldots) \\
c & =(0,1,0,1,0,1, \ldots)
\end{aligned}
$$

3.

Problem 3.

(a) Find all solutions to

$$
r\left[\begin{array}{ll}
1 & 2 \\
1 & 2
\end{array}\right]+s\left[\begin{array}{ll}
1 & 1 \\
2 & 2
\end{array}\right]+t\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] .
$$

(b) Find all solutions to

$$
r\left[\begin{array}{ll}
1 & 2 \\
1 & 2
\end{array}\right]+s\left[\begin{array}{ll}
1 & 1 \\
2 & 2
\end{array}\right]+t\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] .
$$

(c) Is

$$
\left\{\left[\begin{array}{ll}
1 & 2 \\
1 & 2
\end{array}\right],\left[\begin{array}{ll}
1 & 1 \\
2 & 2
\end{array}\right],\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\right\}
$$

the basis of some subspace of $\mathbb{R}^{2,2}$?

4.

Problem 4. Suppose $T: V \rightarrow \mathbb{R}^{3}$ is linear and that

$$
\begin{aligned}
& T\left(\mathbf{v}_{1}\right)=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right] \\
& T\left(\mathbf{v}_{2}\right)=\left[\begin{array}{l}
0 \\
2 \\
0
\end{array}\right]
\end{aligned}
$$

and

$$
T\left(\mathbf{v}_{3}\right)=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

(a) What is $T\left(\mathbf{v}_{1}+\mathbf{v s}_{3}\right)$?
(b) What is $T\left(4 \mathbf{v}_{3}\right)$?
(c) Assuming that $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are linearly independent, find a vector \mathbf{x} other than 0 so that $T(\mathbf{x})=0$.

5.

Problem 5. Suppose $T: V \rightarrow W$ is a linear transformation and that $\mathcal{B}=\left[\mathbf{b}_{1}, \mathbf{b}_{2}\right]$ is an ordered basis for V and that $\mathcal{C}=\left[\mathbf{c}_{1}, \mathbf{c}_{2}, \mathbf{c}_{3}\right]$ is an ordered basis for V. Suppose the matrix representing T relative to $\mathcal{B}-\mathcal{C}$ is

$$
A=\left[\begin{array}{ll}
1 & 0 \\
2 & 1 \\
2 & 0
\end{array}\right]
$$

(a) What is the dimension of V ?
(b) What is $T\left(\mathbf{b}_{1}\right)$?
(c) If \mathbf{v} has \mathcal{B}-coordinates
$\left[\begin{array}{l}1 \\ 4\end{array}\right]$,
what are the \mathcal{C}-coordinates of $T(\mathbf{v})$?

6.

Problem 6. For each matrix called A, find a basis for $N(A)$ and $\operatorname{col}(A)$.
(a)

$$
A=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

(b)

$$
A=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

(c)

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 2 \\
1 & 1 & 2
\end{array}\right]
$$

