REVIEW I

Problem 0.1. Find all solutions in x_1, \ldots, x_4 to the simultaneous sets of equations

x_1							=	y_1
$2x_1$	+	x_2					=	y_2
x_1	+	$3x_2$	+	x_3			=	y_3
x_1	+	x_2	+	x_3	+	x_4	=	y_4

and

Problem 0.2. Verify that the inverse of

$$\begin{bmatrix} 2 & 2 & 0 & 1 \\ 2 & 1 & 0 & 1 \\ -1 & 2 & -1 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix}$$

is one of

$$\begin{bmatrix} -1 & 1 & 0 & 1 \\ 1 & -1 & 0 & 0 \\ 1 & 0 & 0 & -2 \\ 3 & -3 & -1 & -1 \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} -1 & 1 & 0 & 1 \\ 1 & -1 & 0 & 0 \\ 3 & -3 & -1 & -1 \\ 1 & 0 & 0 & -2 \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 3 & -3 & -1 & -1 \\ 1 & 0 & 0 & -2 \end{bmatrix}.$$

Knowing this, solve

Problem 0.3. Find all solutions to

Problem 0.4. Find all solutions to

Problem 0.5. Find the inverse to each of the following matrices:

(a)

$$A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$
(b)

$$B = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
(c)

$$C = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
(d)

$$D = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$
(e)

$$F = \begin{bmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Problem 0.6. Find the determinent of A where

$$A = \begin{bmatrix} -3 & 2 & 3 \\ 0 & 1 & 2 \\ 4 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 2 & 2 & 0 \\ 2 & 2 & 4 \end{bmatrix} \begin{bmatrix} -3 & 2 & 3 \\ 0 & 1 & 2 \\ 4 & 0 & 1 \end{bmatrix}^{-1}$$

Problem 0.7. Find the determinant of the following matrix, in terms of the unknow reals r and s.

	2	1	1	1
Δ	2r	1	r	r
$A \equiv$	1	0	s	1
	4	1	1	3
	L			_

Problem 0.8. Find elementary matrices whose product equals A, where

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$