A MATRIX REPRESENTATION EXAMPLE

Example 1. Suppose $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ is the linear transformation defined by

$$
T\left(\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]\right)=\left[\begin{array}{c}
a \\
b+c
\end{array}\right]
$$

If \mathcal{B} is the ordered basis $\left[\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right]$ and \mathcal{C} is the ordered basis $\left[\mathbf{c}_{1}, \mathbf{c}_{2}\right]$, where

$$
\mathbf{b}_{1}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], \mathbf{b}_{2}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \mathbf{b}_{3}=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]
$$

and

$$
\mathbf{c}_{1}=\left[\begin{array}{l}
2 \\
1
\end{array}\right], \mathbf{c}_{2}=\left[\begin{array}{l}
3 \\
0
\end{array}\right]
$$

what is the matrix representation of T with respect to \mathcal{B} and \mathcal{C} ?

We need to solve one equation for each basis vector in the domain V; one for each column of the transformation matrix A.

For Column 1: We must solve

$$
r\left[\begin{array}{l}
2 \\
1
\end{array}\right]+s\left[\begin{array}{l}
3 \\
0
\end{array}\right]=T\left(\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]\right)
$$

which is

$$
r\left[\begin{array}{l}
2 \\
1
\end{array}\right]+s\left[\begin{array}{l}
3 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

There can be only one solution (since \mathcal{C} is a basis (!)) and this equation is easy enough to work in one's head:

$$
1\left[\begin{array}{l}
2 \\
1
\end{array}\right]+\left(-\frac{1}{3}\right)\left[\begin{array}{l}
3 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

The first column is thus determined as

$$
A=\left[\begin{array}{ccc}
1 & * & * \\
-\frac{1}{3} & * & *
\end{array}\right]
$$

For Column 2: We must solve

$$
r\left[\begin{array}{l}
2 \\
1
\end{array}\right]+s\left[\begin{array}{l}
3 \\
0
\end{array}\right]=T\left(\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

We just worked this equation. The solution is

$$
\begin{aligned}
r & =1 \\
s & =-\frac{1}{3}
\end{aligned}
$$

We have the second column:

$$
A=\left[\begin{array}{ccc}
1 & 1 & * \\
-\frac{1}{3} & -\frac{1}{3} & *
\end{array}\right] .
$$

For Column 3: We must solve

$$
r\left[\begin{array}{l}
2 \\
1
\end{array}\right]+s\left[\begin{array}{l}
3 \\
0
\end{array}\right]=T\left(\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
0 \\
2
\end{array}\right]
$$

As a linear system this is

$$
\begin{aligned}
2 r+3 s & =0 \\
r & =2
\end{aligned}
$$

The solution is

$$
\begin{aligned}
r & =2 \\
s & =-\frac{4}{3} .
\end{aligned}
$$

We have the third column and so our answer:

$$
A=\left[\begin{array}{ccc}
1 & 1 & 2 \\
-\frac{1}{3} & -\frac{1}{3} & -\frac{4}{3} .
\end{array}\right] .
$$

