A BASIS MAKES AN ISOMORPHISM

Here are some critical facts rather buried in the book.

- An isomorphism is a linear transformation $T: V \to W$ for which $T(\mathbf{v}) = \mathbf{w}$ has a unique solution in \mathbf{v} for any given \mathbf{w} .
- Given an isomorphism $T : V \to W$, every linear algebra question in V can be translated into a question in W by applying T to all the vectors in the question.
- A basis \mathcal{B} for V determines an isomorphism

$$S: V \to \mathbb{R}^n$$

by "taking coordinates"

$$S(\mathbf{v}) = [\mathbf{v}]_{\mathcal{B}}.$$

If you can find "easy" coordinates based on an "easy" basis V, you should consider translating every question in V into a question in \mathbb{R}^n by taking coordinates.

Next, an example of what I mean by the second point. You might just ignore the proof. The overall idea is that an isormorhism $T : V \to W$ means that W is "just like" V in the context of any question involving addition and scalar multiplication.

Lemma 1. Suppose there is an isomorhism $T : V \to W$. The vector \mathbf{v}_0 is in the span of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ if and only if \mathbf{w}_0 is in the span of $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3$ where $\mathbf{w}_j = T(\mathbf{v}_j)$.

Proof. If

$$\mathbf{v_0} = r\mathbf{v}_1 + s\mathbf{v}_2 + t\mathbf{v}_3$$

then

$$\mathbf{w_0} = T(\mathbf{v}_0)$$

= $T(r\mathbf{v}_1 + s\mathbf{v}_2 + t\mathbf{v}_3)$
= $rT(\mathbf{v}_1) + sT(\mathbf{v}) + tT(\mathbf{v}_3)$
= $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3.$

If

$$\mathbf{w_0} = r\mathbf{w}_1 + s\mathbf{w}_2 + t\mathbf{w}_3$$

then

$$T(\mathbf{v}_0) = w_0$$

and

$$T(r\mathbf{w}_1 + s\mathbf{w}_2 + t\mathbf{w}_3) = rT(\mathbf{v}_1) + sT(\mathbf{v}) + tT(\mathbf{v}_3)$$
$$= r\mathbf{w}_1 + s\mathbf{w}_2 + t\mathbf{w}_3$$
$$= w_0.$$

The equation $T(\mathbf{x}) = \mathbf{w}_0$ has only one solution so

$$\mathbf{v}_0 = r\mathbf{w}_1 + s\mathbf{w}_2 + t\mathbf{w}_3.$$

More "translation" lemmas.

Lemma 2. Suppose there is an isomorphism $T : V \to W$. The vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ form a basis for V if and only if $T(\mathbf{v}_1), T(\mathbf{v}_2), \dots, T(\mathbf{v}_n)$ form a basis for W.

Suppose there is an isomorphism $T: V \to W$. For vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ in V,

 $dim(span(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n)) = dim(span(T(\mathbf{v}_1), T(\mathbf{v}_2), \dots, T(\mathbf{v}_n))).$

1. USING AN EASY BASIS

Example 1. What is the dimension of the span of

[1]	0	0]	[1]	0	0]	[1]	1	1]	[1]	1	1		[1]	2	3 -]	0	2	3	1
0	2	0	,	0	1	0	,	0	0	0	,	0	1	1	,	0	4	5	,	0	1	5	?
0	0	1		0	0	1		0	0	0		0	0	1		0	0	6		0	0	0	

Ouch. The standard casting out will take forever. Here's a better way. An easy ordered basis for the vector space of upper-triangular 3-by-3 matrices is

Γ	1	0	0		0	1	0		0	0	1		0	0	0		0	0	0		0	0	0
\mathcal{B} :	0	0	0	,	0	0	0	,	0	0	0	,	0	1	0	,	0	0	1	,	0	0	0
	0	0	0	,	0	0	0	Í	0	0	0	Í	0	0	0	ŕ	0	0	0	,	0	0	1

Let's use coordinates with respect to \mathcal{B} . Since

[1]	0	0	1
0	2	0	
0	0	1	l
-		-	

will have coordinate vector

 $\begin{bmatrix} 1\\0\\2\\0\\1 \end{bmatrix}$

and so forth, we need only settle the translated question: what is the dimension of the span of

 $\begin{bmatrix} 1\\0\\0\\2\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\0\\1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\1\\1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\3\\4\\5\\6 \end{bmatrix}, \begin{bmatrix} 0\\2\\3\\1\\1\\5\\0 \end{bmatrix}?$

2

So let

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 2 & 2 \\ 0 & 0 & 1 & 1 & 3 & 3 \\ 2 & 1 & 0 & 1 & 4 & 1 \\ 0 & 0 & 0 & 1 & 5 & 5 \\ 1 & 1 & 0 & 1 & 6 & 0 \end{bmatrix}.$$

According to Matlab, the row reduced form of A is

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

•

So we have six pivots, and the answer is 6.