HOMEWORK 5

Problem 1. In this problem, we will work always in V, where V is the x - y-plane in \mathbb{R}^{3}, which is

$$
V=\left\{\left.\left[\begin{array}{l}
x \\
y \\
0
\end{array}\right] \right\rvert\, x \text { and } y \text { are any real numbers }\right\}
$$

We will use different bases of V to create different coordinate systems.
(a) What is the coordinate vector for

$$
\left[\begin{array}{l}
2 \\
3 \\
0
\end{array}\right]
$$

with respect to the ordered basis

$$
\left[\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right] ?
$$

(b) What is the coordinate vector for

$$
\left[\begin{array}{l}
2 \\
3 \\
0
\end{array}\right]
$$

with respect to the ordered basis

$$
\left[\left[\begin{array}{c}
10 \\
10 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
10 \\
0
\end{array}\right]\right] ?
$$

(c) What is the coordinate vector for

$$
\left[\begin{array}{l}
2 \\
3 \\
0
\end{array}\right]
$$

with respect to the ordered basis

$$
\left[\left[\begin{array}{l}
2 \\
2 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right] ?
$$

(d) What is \mathbf{v} if \mathbf{v} has coordinate vector

$$
\left[\begin{array}{l}
1 \\
4
\end{array}\right]
$$

with respect to the ordered basis

$$
\left[\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right] ?
$$

(e) What is \mathbf{v} if \mathbf{v} has coordinate vector

$$
\left[\begin{array}{l}
1 \\
4
\end{array}\right]
$$

with respect to the ordered basis

$$
\left[\left[\begin{array}{l}
5 \\
5 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
5 \\
0
\end{array}\right]\right] ?
$$

Problem 2. Let

$$
\mathbf{b}_{1}=\left[\begin{array}{c}
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right], \quad \mathbf{b}_{2}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
1
\end{array}\right], \quad \mathbf{b}_{3}=\left[\begin{array}{c}
0 \\
1 \\
0 \\
1 \\
0
\end{array}\right]
$$

Now consider the ordered basis $\left[\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right]$ of the subspace of 5 -vectors that are symmetric with repect to a vertical flip.

With respect to this ordered basis:
(a) What is the coordinate vector of

$$
\left[\begin{array}{l}
5 \\
4 \\
3 \\
4 \\
5
\end{array}\right] ?
$$

(b) What is the coordinate vector of

$$
\left[\begin{array}{l}
0 \\
1 \\
1 \\
1 \\
0
\end{array}\right] ?
$$

(c) Which 5-vector has coordinate vector

$$
\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] ?
$$

(d) Which 5 -vector has coordinate vector

$$
\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] ?
$$

Problem 3. Consider the ordered basis $\left[b_{1}, b_{2}, b_{3}, b_{4}\right]$ of \mathbb{R}^{4} :

$$
\mathbf{b}_{1}=\left[\begin{array}{c}
1 \\
0 \\
0 \\
0
\end{array}\right], \quad \mathbf{b}_{2}=\left[\begin{array}{c}
1 \\
1 \\
0 \\
0
\end{array}\right], \quad \mathbf{b}_{3}=\left[\begin{array}{c}
1 \\
2 \\
1 \\
0
\end{array}\right], \quad \mathbf{b}_{4}=\left[\begin{array}{c}
1 \\
3 \\
3 \\
1
\end{array}\right]
$$

With respect to this basis:
(a) What is the coordinate vector for
$\left[\begin{array}{l}4 \\ 6 \\ 4 \\ 2\end{array}\right] ?$
(b) What is the coordinate vector for
$\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right] ?$

Problem 4. Suppose \mathbf{v}, and \mathbf{w} are elements of the same vector space V. Find infinitely many solutions in the real variables r, s and t, to the equation

$$
r(\mathbf{v}+\mathbf{w})+s(\mathbf{v}-\mathbf{w})+t(2 \mathbf{v}-\mathbf{w})=2 \mathbf{v}+5 \mathbf{w}
$$

Problem 5. Consider the following vector space, which is a subspace of \mathbb{R}^{6} :

$$
V=\left\{\left.\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right] \right\rvert\, x_{1}=-x_{3}=x_{4}=x_{5}\right\}
$$

An ordered basis for this is $\left[\mathbf{b}_{1}, \mathbf{b}_{2}\right]$ where

$$
\mathbf{b}_{1}=\left[\begin{array}{c}
1 \\
0 \\
-1 \\
1 \\
1 \\
1
\end{array}\right], \quad \mathbf{b}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

With respect to this basis:
(a) What is the coordinate vector for

$$
5\left(\mathbf{b}_{1}+3 \mathbf{b}_{2}\right) ?
$$

(b) What is the coordinate vector for

$$
\mathbf{b}_{2}+2 \mathbf{b}_{1} ?
$$

(c) What is the coordinate vector for

$$
\mathbf{b}_{1}+2 \mathbf{b}_{1} ?
$$

Problem 6. Let V be the functions on the real line that solve the differential equation

$$
f^{\prime \prime}=-f
$$

An ordered basis for V is $\left[f_{1}, f_{2}\right]$ where

$$
f_{1}(x)=\cos (x), \quad f_{2}(x)=\sin (x)
$$

For example, this makes

$$
5 \sin (x)
$$

the solution with coordinate vector

$$
\left[\begin{array}{l}
0 \\
5
\end{array}\right] .
$$

Since

$$
\frac{d}{d x}(\sin (x+1))=\cos (x+1)
$$

and

$$
\frac{d}{d x}(\cos (x+1))=-\sin (x+1)
$$

the function given by

$$
\sin (x+1)
$$

is in V. With respect the basis above, what is its coordinate vector?

