HOMEWORK 2

Problem 1. Using Guassian elimination on the extended matrix as desccribed in the book, find the inverse to

$$
\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Problem 2. Express the following matrix as a product of elementary matrices:

$$
A=\left[\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right]
$$

Problem 3. Suppose A is a 3 by 3 matrix that can be row reduced to I using the following row operations, in the order given:

$$
\begin{aligned}
& 2 \mathrm{R} 2 \rightarrow \mathrm{R} 2 \\
& \mathrm{R} 1-\mathrm{R} 2 \rightarrow \mathrm{R} 1 \\
& \mathrm{R} 3-\mathrm{R} 2 \rightarrow \mathrm{R} 3 \\
& \mathrm{R} 2-\mathrm{R} 1 \rightarrow \mathrm{R} 2 \\
& \mathrm{R} 3 \leftrightarrow \mathrm{R} 2
\end{aligned}
$$

What is A ?

Problem 4. For any real number r, the following matrix has an inverse. Calculate the inverse:

$$
\left[\begin{array}{lll}
1 & r & 0 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right]
$$

Problem 5. Suppose r is a real number. Find the inverse of the following matrix, except for those values of r that make the matrix singular:

$$
\left[\begin{array}{lll}
1 & r & 0 \\
1 & 1 & 0 \\
2 & 2 & 1
\end{array}\right]
$$

Problem 6. Problem 15 on page 59.

Problem 7. Problem 29 on page 60.

