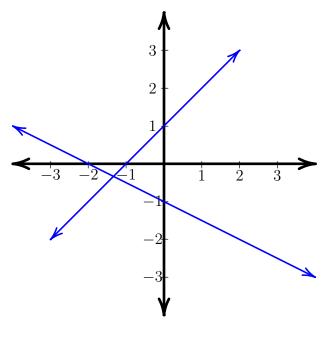
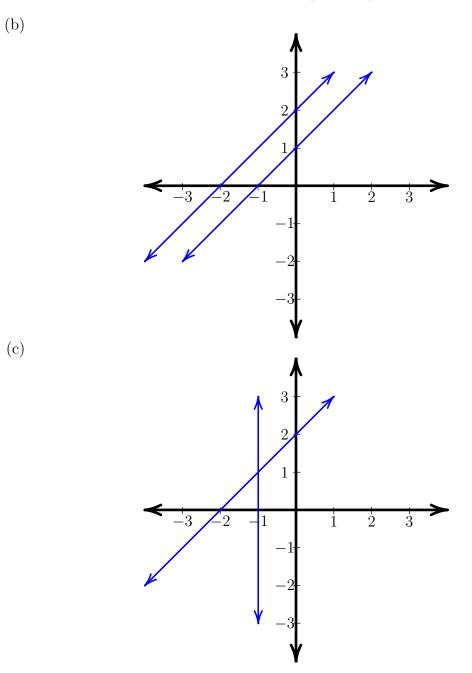
HOMEWORK 1 (REVISED)

Problem 1. Use back substitution to solve each of the following:

(a)


(b)


x	+	y	+	z	=	14	
		y	+	2z	=	6	
				z	=	2	

x_1	—	x_2	+	x_3	—	x_4	=	0
		x_2	+	$3x_3$	_	$5x_4$	=	1
				x_3	+	x_4	=	0
						x_4	=	2

Problem 2. For each figure, find a system of linear equations (in the standard form, as in $\S1.1$) so that the solution sets to the individual equations are plotted.

(a)

2

Problem 3. Mark the following matrices as to whether they are:

- not in row echelon form
- in row echelon form and not in reduced row echelon form
- \bullet in reduced row echelon form

Circle the pivots in any any matrix is in row echlon form.

(a)

(a)

$$\begin{bmatrix} -2 & 3 & 0 & 2 \\ 0 & 0 & 2 & -2 \end{bmatrix}$$
(b)

$$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 2 \end{bmatrix}$$
(c)

$$\begin{bmatrix} 5 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$
(d)

$$\begin{bmatrix} 1 & 0 & -2 & 0 \\ 0 & 2 & 2 & 0 \\ 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Problem 4. For each matrix listed, find a single *elementary* row operation that can be applied to yield a matrix that is in row echelon form. *This is the problem that changed.*

(a)

$$\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 4 \\ 1 & 3 & -2 \\ 0 & 0 & 0 \end{bmatrix}$$
(b)

$$\begin{bmatrix} 1 & 2 & 2 & 2 \\ 1 & 2 & 3 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
(c)

$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Problem 5. Using only elementary row operations, transform the following matrix into row echelon form:

3	6	3	12
-2	-2	-2	0
0	1	0	1

Problem 6. Find all solutions to the following system, using the associated augmented matrix and row operations leading to *reduced* row echelon form.

$2x_1$			+	$4x_3$	=	20
x_1	+	x_2	+	x_3	=	9
$-x_1$	+	x_2	+	x_3	=	5

Problem 7. Find all solutions to the following system.