COMMENTS ON THE DOT PRODUCT

1. ON COLUMN VECTORS

The book uses (a, b, c) interchangably with $\left[\begin{array}{lll}a & b & c\end{array}\right]$. So we are stuck with

$$
(a, b, c)^{T}=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]
$$

The dot product, less commonly called the scalar product, is defined on a pair of vectors in \mathbb{R}^{n} as follows:

$$
\mathbf{x} \cdot \mathbf{y}=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}
$$

or

$$
\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] \cdot\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}
$$

If you are willing (as our author is) to pretend a scalar is the same as a one-by-one matrix, then

$$
\mathbf{x} \cdot \mathbf{y}=\mathbf{x}^{T} \mathbf{y}
$$

The works because

$$
\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right]\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]=\left[x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}\right]=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}
$$

What I dislike about the book's notation is you will run into this in the problems: if

$$
\mathbf{x}=(a, b, c)^{T} \text { and } \mathbf{y}=(r, s, t)^{T}
$$

then

$$
\mathbf{x}^{T} \mathbf{y}=\left((a, b, c)^{T}\right)^{T}(r, s, t)^{T}
$$

This works, since

$$
\mathbf{x}^{T} \mathbf{y}=[a r+b s+c t]=a r+b s+c t
$$

but you will find it easier to just make this replacement in this chapter

$$
\mathbf{x}^{T} \mathbf{y} \rightsquigarrow \mathbf{x} \cdot \mathbf{y}
$$

as in these examples:
The length becomes

$$
\|\mathrm{x}\|=\sqrt{\mathrm{x} \cdot \mathrm{x}}
$$

The cosine of the angle between vectors becomes

$$
\cos (\theta)=\frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\|\|\mathbf{y}\|}
$$

2. ON n-TUPLES

If you are working directly with ordered n-tuples, the dot product is just

$$
\left(x_{1}, x_{2}, \ldots, x_{n}\right) \cdot\left(y_{1}, y_{2}, \ldots, y_{n}\right)=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n} .
$$

3. On Row Vectors

You will see the dot product of two row vectors:

$$
\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right] \cdot\left[\begin{array}{llll}
y_{1} & y_{2} & \cdots & y_{n}
\end{array}\right]=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n} .
$$

In this, case, if you approve of treating a 1-by-1 matrix as a scalar, this holds:

$$
\mathbf{x} \cdot \mathbf{y}=\mathbf{x y}^{T}
$$

4. Why 1-BY-1 ISN'T SCALAR

If we strip off the braces from all one-by-one matrices, then odd things happen. For example

$$
\left(\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]=\left[\begin{array}{ll}
2 & 2 \\
2 & 2
\end{array}\right]
$$

and yet

$$
\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\right)=!?
$$

is not even defined. So we've lost the associative law.

5. Dealing with Matlab

The 1-by-1 is scalar nonsense breaks a few things in Matlab. As in the last section:

$$
\left(\left[\begin{array}{ll}
1 & 1
\end{array}\right] *[1 ; 1]\right) *\left[\begin{array}{lll}
1 & 1 ; 1 & 1
\end{array}\right]
$$

returns a 2-by 2 matrix, while

$$
\left[\begin{array}{ll}
1 & 1
\end{array}\right] *\left([1 ; 1] *\left[\begin{array}{lll}
1 & 1 ; 1 & 1
\end{array}\right]\right)
$$

returns an error.
In any case, if you want the dot product of two column vectors in Matlab, you need to use $x^{\prime *} y$. If you want the dot product of two row vectors you use $x^{*} y^{\prime}$.
6. Some Axioms

Using what we know about transpose and matrix multiplication, you can figure out

$$
\left(\mathbf{x}_{1}+\mathbf{x}_{2}\right)^{T} \mathbf{y}=\left(\mathbf{x}_{1}^{T}+\mathbf{x}_{2}^{T}\right) \mathbf{y}=\mathbf{x}_{1}^{T} \mathbf{y}+\mathbf{x}_{2}^{T} \mathbf{y}
$$

but it is a good idea to see this directly in terms of the dot product.
Here are some formulas for the dot product:

$$
\begin{gathered}
(\mathbf{x}+\mathbf{y}) \cdot \mathbf{z}=\mathbf{x} \cdot \mathbf{z}+\mathbf{y} \cdot \mathbf{z} \\
(\alpha \mathbf{x}) \cdot \mathbf{z}=\alpha(\mathbf{x} \cdot \mathbf{z}) \\
\mathbf{x} \cdot \mathbf{y}=\mathbf{y} \cdot \mathbf{x} \\
\mathbf{x} \cdot(\mathbf{y}+\mathbf{z})=\mathbf{x} \cdot \mathbf{y}+\mathbf{x} \cdot \mathbf{z} \\
\mathbf{x} \cdot(\alpha \mathbf{y})=\alpha \mathbf{x} \cdot \mathbf{y} \\
\mathbf{x} \cdot \mathbf{y}=0 \quad \Longleftrightarrow \mathbf{x} \perp \mathbf{y} \quad \text { (this is a definition) }
\end{gathered}
$$

