CASTING OUT, SLOW AND FAST

1. SLOW BUT GENERAL

Leon barely covers the standard "casting out" method. It is an algorithm that works in any vector space *V*.

Input: A finite set of vectors $B = {\mathbf{b}_1, ..., \mathbf{b}_m}$ contained in *V* **Ouput:** A subset B_m of *B* with

$$\operatorname{span}(B_m) = \operatorname{span}(B)$$

so that B_m is a basis for span(B).

Method:

(1) Find the first nonzero vector $b_{k'}$ in B. Let $B_{k'} = \{b_{k'}\}$ and let k = k' + 1. (Cast out leading zero vectors).

(2)

- (a) If b_k is in span (B_{k-1}) then let $B_k = B_{k-1}$. (Cast out).
- (b) If b_k is not in span (B_{k-1}) then let $B_k = B_{k-1} \cup \{\mathbf{b}_k\}$. (Keep)
- (3) Let k = k + 1.
- (4) If $k \leq m$ repeat 2 and 3.

Example 1. Suppose the vector space is that of all 2-by-2 matrices. Find a subset of $\{b_1, \ldots, b_5\}$ that is a basis for the span of $\{b_1, \ldots, b_5\}$, where

$$\mathbf{b}_1 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \ \mathbf{b}_2 = \begin{bmatrix} 1 & 4 \\ 3 & 1 \end{bmatrix}, \ \mathbf{b}_3 = \begin{bmatrix} 1 & 5 \\ 3 & 1 \end{bmatrix}, \ \mathbf{b}_4 = \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix}, \ \mathbf{b}_5 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

Using the casting our method, we throw out \mathbf{b}_1 and start with $\{\mathbf{b}_2\}$:

$$B_2 = \left\{ \left[\begin{array}{cc} 1 & 4 \\ 3 & 1 \end{array} \right] \right\}.$$

The k = 3 Step: Is b_3 in the span of B_2 ? I.e., can we solve

$$r_1 \left[\begin{array}{cc} 1 & 4 \\ 3 & 1 \end{array} \right] = \left[\begin{array}{cc} 1 & 5 \\ 3 & 1 \end{array} \right]?$$

Well, certainly not. We get $r_1 = 1$ and $4r_1 = 5$ and can't do both. The new vector (matrix) is not in the span of the current set, so add it:

$$B_3 = \left\{ \left[\begin{array}{rrr} 1 & 4 \\ 3 & 1 \end{array} \right], \left[\begin{array}{rrr} 1 & 5 \\ 3 & 1 \end{array} \right] \right\}.$$

The k = 4 Step: Is b_4 in the span of B_3 ? I.e., can we solve

$$r_1 \begin{bmatrix} 1 & 4 \\ 3 & 1 \end{bmatrix} + r_2 \begin{bmatrix} 1 & 5 \\ 3 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix}?$$

This is the same as the equations

which we try to solve

$$\begin{bmatrix} 1 & 1 & 1 \\ 4 & 5 & 0 \\ 3 & 3 & 3 \\ 1 & 1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & -4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

The system has a solution. So we cast out $\mathbf{b}_4:$

$$B_4 = B_3 = \left\{ \begin{bmatrix} 1 & 4 \\ 3 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 5 \\ 3 & 1 \end{bmatrix} \right\}.$$

The k = 5 Step: Is b_5 in the span of B_4 ? I.e., can we solve

$$r_1 \begin{bmatrix} 1 & 4 \\ 3 & 1 \end{bmatrix} + r_2 \begin{bmatrix} 1 & 5 \\ 3 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}?$$

This is the same as the equations

which we try to solve

$$\begin{bmatrix} 1 & 1 & 1 \\ 4 & 5 & 1 \\ 3 & 3 & 1 \\ 1 & 1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & -4 \\ 0 & 0 & -2 \\ 0 & 0 & 0 \end{bmatrix}$$

The system does not have a solution. So we keep b_5 :

$$B_5 = \left\{ \begin{bmatrix} 1 & 4 \\ 3 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 5 \\ 3 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \right\}.$$

Our answer is B_5 .

Now another example, in \mathbb{R}^5 .

Example 2. Find a subset of $\{b_1, \ldots, b_5\}$ that is a basis for the span of

$$\mathbf{b}_{1} = \begin{bmatrix} 1\\2\\1\\2\\1 \end{bmatrix}, \ \mathbf{b}_{2} = \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix}, \ \mathbf{b}_{3} = \begin{bmatrix} 2\\0\\2\\0\\2 \end{bmatrix}, \ \mathbf{b}_{4} = \begin{bmatrix} 1\\0\\0\\0\\0 \end{bmatrix}, \ \mathbf{b}_{5} = \begin{bmatrix} 1\\2\\3\\2\\3 \end{bmatrix}$$

Using the casting our method, we start with

$$B_1 = \left\{ \begin{bmatrix} 1\\2\\1\\2\\1 \end{bmatrix} \right\}.$$

The k = 2 Step: Is \mathbf{b}_2 in the span of B_1 ? Can we solve

$$r_1 \begin{bmatrix} 1\\2\\1\\2\\1 \end{bmatrix} = \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix}?$$

No. So \mathbf{b}_2 is a keeper:

$$B_{2} = \left\{ \begin{bmatrix} 1\\2\\1\\2\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix} \right\}.$$

The k = 3 **Step:** Is \mathbf{b}_3 in the span of B_2 ? Can we solve

$$r_{1}\begin{bmatrix}1\\2\\1\\2\\1\end{bmatrix}+r_{2}\begin{bmatrix}1\\1\\1\\1\\1\end{bmatrix}=\begin{bmatrix}2\\0\\2\\0\\2\end{bmatrix}?$$

.

Jumping to the augemented matrix of the resulting equations, we have

$$\begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 0 \\ 1 & 1 & 2 \\ 2 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 2 \\ 0 & -1 & -4 \\ 0 & 0 & 0 \\ 0 & -1 & -4 \\ 0 & 0 & 0 \end{bmatrix}$$
$$\rightarrow \begin{bmatrix} 1 & 1 & 2 \\ 0 & -1 & -4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

and so this has a solution. We cast-out \mathbf{b}_3 :

$$B_3 = B_2 = \left\{ \begin{bmatrix} 1\\2\\1\\2\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix} \right\}.$$

The k = 4 **Step:** Is \mathbf{b}_4 in the span of B_3 ? Can we solve

$$r_{1}\begin{bmatrix}1\\2\\1\\2\\1\end{bmatrix}+r_{2}\begin{bmatrix}1\\1\\1\\1\end{bmatrix}=\begin{bmatrix}1\\0\\0\\0\\0\end{bmatrix}?$$

Jumping to the augemented matrix of the resulting equations, we have

$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 0 \\ 1 & 1 & 0 \\ 2 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 2 \\ 0 & -1 & -2 \\ 0 & 0 & -1 \\ 0 & -1 & -2 \\ 0 & 0 & -1 \end{bmatrix}$$
$$\rightarrow \begin{bmatrix} 1 & 1 & 2 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

and so there is no a solution. We keep b_4 :

$$B_4 = \left\{ \begin{bmatrix} 1\\2\\1\\2\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\0\\0\\0 \end{bmatrix} \right\}.$$

The k = 5 Step: Is b_5 in the span of B_5 ? Can we solve

$$r_{1}\begin{bmatrix}1\\2\\1\\2\\1\end{bmatrix}+r_{2}\begin{bmatrix}1\\1\\1\\1\end{bmatrix}+r_{3}\begin{bmatrix}1\\0\\0\\0\\0\end{bmatrix}=\begin{bmatrix}1\\2\\3\\2\\3\end{bmatrix}?$$

Jumping to the augemented matrix of the resulting equations, we have

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 1 & 0 & 2 \\ 1 & 1 & 0 & 3 \\ 2 & 1 & 0 & 2 \\ 1 & 1 & 0 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & -1 & -2 & 0 \\ 0 & 0 & -1 & 2 \\ 0 & 0 & -1 & 2 \\ 0 & 0 & -1 & 2 \end{bmatrix}$$
$$\rightarrow \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & -1 & -2 & 0 \\ 0 & 0 & -1 & 2 \\ 0 & 0 & 0 & -1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

and so there is a solution. We don't use \mathbf{b}_5 :

$$B_{5} = \left\{ \begin{bmatrix} 1\\2\\1\\2\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\0\\0\\0 \end{bmatrix} \right\}.$$

This is our answer.

Well that took forever.

2. Fast, but only in \mathbb{R}^n

If you want to do casting out in the standard Euclidian spaces, there is a much faster way.

(1) Put all the \mathbf{b}_k in a matrix A:

$$A = [\mathbf{b}_1 \ \mathbf{b}_2 \ \cdots \ \mathbf{b}_m].$$

(2) Row reduce until you can see the pivot positions:

$$A \to \cdots \to U.$$

(3) Keep b_j if there is a pivot position in column j of U.

Notice that the pivots in *U* tell you which columns of *A* to use. Let's repeat the last example.

Example 3. Find a subset of $\{b_1, \ldots, b_5\}$ that is a basis for the span of

$$\mathbf{b}_{1} = \begin{bmatrix} 1\\2\\1\\2\\1 \end{bmatrix}, \ \mathbf{b}_{2} = \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix}, \ \mathbf{b}_{3} = \begin{bmatrix} 2\\0\\2\\0\\2 \end{bmatrix}, \ \mathbf{b}_{4} = \begin{bmatrix} 1\\0\\0\\0\\0 \end{bmatrix}, \ \mathbf{b}_{5} = \begin{bmatrix} 1\\2\\3\\2\\3 \end{bmatrix}.$$

Let

$$A = \begin{bmatrix} 1 & 1 & 2 & 1 & 1 \\ 2 & 1 & 0 & 0 & 2 \\ 1 & 1 & 2 & 0 & 3 \\ 2 & 1 & 0 & 0 & 2 \\ 1 & 1 & 2 & 0 & 3 \end{bmatrix}$$

and do the row ops needed:

There are pivots positions in columns 1, 2 and 4 and so we keep b_1 , b_2 and b_4 : Answer

$$\left\{ \begin{bmatrix} 1\\2\\1\\2\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\0\\0\\0 \end{bmatrix} \right\}.$$

So why did that work? I'll not give a proof, but notice the following:

In our first solution, we tossed b_3 because

$$-2\begin{bmatrix}1\\2\\1\\2\\1\end{bmatrix}+4\begin{bmatrix}1\\1\\1\\1\\1\end{bmatrix}=\begin{bmatrix}2\\0\\2\\0\\2\end{bmatrix}$$

If we had applied the slow algorithm to the columns of *U* we would have found

$$-2\begin{bmatrix} 1\\0\\0\\0\\0\end{bmatrix} + 4\begin{bmatrix} 1\\-1\\0\\0\\0\end{bmatrix} = \begin{bmatrix} 2\\-4\\0\\0\\0\end{bmatrix}$$

and so would have tossed the third column for exactly the same "reason."

3. As a test for Linear Independence

- Suppose you have *m* vectors $\mathbf{v}_1, \ldots, \mathbf{v}_m$ in *V*. If the casting out algorithm tells you to *keep all* these vectors, then the set $\{\mathbf{v}_1, \ldots, \mathbf{v}_m\}$ was *linearly independent* to begin with. Otherwise, it wasn't.
- Suppose you know that *V* has dimension *n* and you have *n* vectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$. If the casting out algorithm tells you to *keep all* the vectors, then $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ was *a basis* for *V* to begin with. Otherwise, it wasn't.

Casting out is such a pain in general that these statements are often little help. But, in \mathbb{R}^n , casting out is fast, so these really help. In terms of rank:

• Suppose you have *m* vectors $\mathbf{v}_1, \ldots, \mathbf{v}_m$ in \mathbb{R}^n . If

$$\operatorname{rank} \begin{bmatrix} | & | & | \\ \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_m \\ | & | & | & | \end{bmatrix} = m$$

then v_1, \ldots, v_m are linearly independent. If the rank is less, they are dependent.

• Suppose you have *n* vectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$ in \mathbb{R}^n . If

$$\operatorname{rank} \left[\begin{array}{ccc} | & | & | \\ \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \\ | & | & & | \end{array} \right] = n$$

then $\mathbf{v}_1, \ldots, \mathbf{v}_n$ are a basis for \mathbb{R}^n . If the rank is less, they are not.

Recall: If you have more or less than *n* vectors in \mathbb{R}^n , then you don't have a basis. In terms of row ops, if $U = \operatorname{rref}(A)$:

- The columns of A are linearly independent \Leftrightarrow there's a pivot in every column of U.
- The columns of A are a basis of $\mathbb{R}^n \Leftrightarrow A$ is *n*-by-*n* and there's a pivot in every column of U.

Putting together a bunch of stuff:

Theorem 1. The columns of an n-by-n matrix A are a basis for \mathbb{R}^n \Leftrightarrow there's a pivot in every column of $U = \operatorname{rref}(A)$ $\Leftrightarrow A \text{ is invertible}$ $\Leftrightarrow \operatorname{rank}(A) = n$ $\Leftrightarrow \det(A) \neq 0.$