CASTING OUT, SLOW AND FAST

1. SLOW BUT GENERAL

Leon barely covers the standard “casting out” method. It is an algorithm that works in
any vector space V.

Input: A finite set of vectors B = {by,.

.., b, } contained in V'
Ouput: A subset B,, of B with

span(B,,) = span(B)
so that B,, is a basis for span(B).
Method:

(1) Find the first nonzero vector by in B. Let By = {b;s} and let k = k&’ + 1. (Cast out
leading zero vectors).

()
(a) If by, is in span(By,_;) then let By, = Bj,_;. (Cast out).

(b) If by is not in span(By_1) then let B, = B;_1 U {b,}. (Keep)
(3) Letk =k + 1.

(4) If K < m repeat 2 and 3.

Example 1. Suppose the vector space is that of all 2-by-2 matrices. Find a subset of
{b1,....,bs} thatis a basis for the span of {by, ... b5}, where

0 0 1 4 (1 5] 10 11
bl_{o 0}’1’2—[3 1}’1’3__3 1_’b4_{3 1}71’5_{1 1]

Using the casting our method, we throw out b, and start with {b,} :

P
32:{_3 1_}.
The k = 3 Step: Is b; in the span of B,? I.e., can we solve
1 4 1517,
131 31|

Well, certainly not. We get r; = 1 and 47, = 5 and can’t do both. The new vector (matrix)
is not in the span of the current set, so add it:

SRRl

The k = 4 Step: Is b, in the span of B3? L.e., can we solve

1 4 15 10
dER RS ERI R ER

CASTING OUT, SLOW AND FAST

This is the same as the equations

T1 —+ D) =1
4T1 + 57"2 = 0
3’/“1 + 3’/“2 3
T1 + T2 =1
which we try to solve
1 11 1 1 1
4 5 0 - 01 —4
3 3 3 00 O
1 11 00 O

The system has a solution. So we cast out by :

nene{[3 1[5 1))

The k = 5 Step: Is bs in the span of B4? L.e., can we solve

1 4 15 11
— ?
“[3 1}”2[3 1} {1 1]

This is the same as the equations

T —+ D) =1
d4ry + Hry = 1
3ri + 3ry = 1
T1 + e = 1
which we try to solve
1 11 11 1
4 5 1 _ 01 —4
3 3 1 00 —2
1 11 00 0

The system does not have a solution. So we keep bs :

s-{[3 1] 3 1) 1]}

Our answer is Bs.

Now another example, in R®.

CASTING OUT, SLOW AND FAST

Example 2. Find a subset of {bq, ... ,bs} that is a basis for the span of

1 1 2 1
2 1 0 0
b1: 1 ,bQI 1 ,b3: 2 ,b4: O ,b5:
2 1 0 0
1 1 2 | 0]
Using the casting our method, we start with
1
2
Bl - 1
2
1
The k = 2 Step: Is b, in the span of B;? Can we solve
1 1
2 1
™ 1 = 117
2 1
1 1
No. So b, is a keeper:
SREEE
2 1
BQ - 1 y 1
2 1
1 1
The k = 3 Step: Is bs in the span of B,? Can we solve
(1] (1] [2]
2 1 0
ri| 1| +re| 1| =1]2|7
2 1 0
1 1 2

W N W+

CASTING OUT, SLOW AND FAST

Jumping to the augemented matrix of the resulting equations, we have

112 1 1 2
210 0 —1 —4
112 — |0 0 0
210 0 -1 —4
11 2 0 0 0
1 1 2]

0 -1 —4

— (0 0 o0

0 0 0

0 0 0

and so this has a solution. We cast-out bs :

oy

w

|

S8

no

|
[NC S N g
=

The k = 4 Step: Is b, in the span of B;? Can we solve

T —|—T'2

— N = D
— e
Il
S OO O
)

Jumping to the augemented matrix of the resulting equations, we have

111 1 1 2
210 0 —1 —2
110 — |0 0 =1
210 0 -1 —2
110 0 0 -1
[1 1 2]

01 2

— 0 01
000

000

CASTING OUT, SLOW AND FAST 5

and so there is no a solution. We keep by, :

1 1 1
2 1 0
B,=211],]1],]0
2 1 0
1 1 0)
The k = 5 Step: Is b; in the span of B;? Can we solve
1 1 1 [1
2 1 0 2
T1 1 + T2 1 + T3 0 = 3 ?
2 1 0 2
1 1 0 i 3
Jumping to the augemented matrix of the resulting equations, we have
1111 1 1 1 1]
21 0 2 0 -1 -2 0
1 1 0 3 — O 0 -1 2
21 0 2 0 -1 -2 0
1 10 3 i 0O 0 -1 2 |
11 1 1]
0O -1 -2 0
— 0O 0 -1 2
0O 0 0 0
(0 0 0 0|
and so there is a solution. We don’t use by :
1 1 1
2 1 0
Bs=<{1|1],|1|,]0
2 1 0
1 1 0

This is our answer.

Well that took forever.

2. FAST, BUT ONLY IN R"

If you want to do casting out in the standard Euclidian spaces, there is a much faster
way.
(1) Put all the by, in a matrix A :

CASTING OUT, SLOW AND FAST
(2) Row reduce until you can see the pivot positions:
A—---- = U

(3) Keep b, if there is a a pivot position in column j of U.

Notice that the pivots in U tell you which columns of A to use.
Let’s repeat the last example.

Example 3. Find a subset of {bq, ... ,bs} that is a basis for the span of

1 1 2 1 1
2 1 0 0 2
bi=|1]|,bo=|1],bs=]2|,bs=]0],bs=]3
2 1 0 0 2
1 1 2 0 3
Let
11 2 11
2100 2
A=1]111 2 0 3
21 00 2
112 0 3
and do the row ops needed:
11211 (11 2 1 1]
21 00 2 0O -1 -4 -1 0
A=|11 2 0 3 — 0O 0 0 -1 2
21 00 2 0O -1 -4 -1 0
1120 3 0O 0 0 -1 2
11 2 1 1]
0O -1 -4 -1 0
— O 0 0 -1 2)|=U
0O 0 0 0 O
0O 0 0 0 O

There are pivots positions in columns 1, 2 and 4 and so we keep by, by and b, : Answer

[N NG
— o
OO OO

So why did that work? I'll not give a proof, but notice the following;:

CASTING OUT, SLOW AND FAST 7

In our first solution, we tossed bs; because

1 1 2
2 1 0
2111 4+4|1]| =12
2 1 0
1 1 2

If we had applied the slow algorithm to the columns of U we would have found

1 1 2
0 -1 —4
210 +4(O = 0
0 0 0
0 0 0

and so would have tossed the third column for exactly the same “reason.”

3. AS A TEST FOR LINEAR INDEPENDENCE

e Suppose you have m vectors vy, ..., v,, in V. If the casting out algorithm tells you
to keep all these vectors, then the set {v, ..., v,,} was linearly independent to begin
with. Otherwise, it wasn’t.

e Suppose you know that V' has dimension n and you have n vectors vy, ..., v,. If
the casting out algorithm tells you to keep all the vectors, then {vy,...,v,} wasa
basis for V' to begin with. Otherwise, it wasn't.

Casting out is such a pain in general that these statements are often little help. But, in R",
casting out is fast, so these really help. In terms of rank:

e Suppose you have m vectors vy, ..., v,, in R". If
. |
rank | vi vy -+ Vv, | =m
o |
then vy, ..., v, are linearly independent. If the rank is less, they are dependent.
e Suppose you have n vectors vy, ..., v, in R". If
. |
rank [vi vo -+ v, | =n
. |
then vy, ..., v, are a basis for R". If the rank is less, they are not.

Recall: If you have more or less than n vectors in R", then you don’t have a basis.
In terms of row ops, if U = rref(A) :

e The columns of A are linearly independent < there’s a pivot in every column of U.
e The columns of A are a basis of R" < A is n-by-n and there’s a pivot in every
column of U.

Putting together a bunch of stuff:

CASTING OUT, SLOW AND FAST

Theorem 1. The columns of an n-by-n matrix A are a basis for R
& there’s a pivot in every column of U = rref(A)

& A s invertible

& rank(A) =n

& det(A) # 0.

	1. Slow but general
	2. Fast, but only in Rn
	3. As a test for Linear Independence

