
CASTING OUT, SLOW AND FAST

1. SLOW BUT GENERAL

Leon barely covers the standard “casting out” method. It is an algorithm that works in
any vector space V.

Input: A finite set of vectors B = {b1, . . . ,bm} contained in V

Ouput: A subset Bm of B with

span(Bm) = span(B)

so that Bm is a basis for span(B).
Method:

(1) Find the first nonzero vector bk′ in B. Let Bk′ = {bk′} and let k = k′ + 1. (Cast out
leading zero vectors).

(2)
(a) If bk is in span(Bk−1) then let Bk = Bk−1. (Cast out).
(b) If bk is not in span(Bk−1) then let Bk = Bk−1 ∪ {bk}. (Keep)

(3) Let k = k + 1.
(4) If k ≤ m repeat 2 and 3.

Example 1. Suppose the vector space is that of all 2-by-2 matrices. Find a subset of
{b1, . . . ,b5} that is a basis for the span of {b1, . . . ,b5}, where

b1 =

[

0 0
0 0

]

, b2 =

[

1 4
3 1

]

, b3 =

[

1 5
3 1

]

, b4 =

[

1 0
3 1

]

,b5 =

[

1 1
1 1

]

.

Using the casting our method, we throw out b1 and start with {b2} :

B2 =

{[

1 4
3 1

]}

.

The k = 3 Step: Is b3 in the span of B2? I.e., can we solve

r1

[

1 4
3 1

]

=

[

1 5
3 1

]

?

Well, certainly not. We get r1 = 1 and 4r1 = 5 and can’t do both. The new vector (matrix)
is not in the span of the current set, so add it:

B3 =

{[

1 4
3 1

]

,

[

1 5
3 1

]}

.

The k = 4 Step: Is b4 in the span of B3? I.e., can we solve

r1

[

1 4
3 1

]

+ r2

[

1 5
3 1

]

=

[

1 0
3 1

]

?

1

CASTING OUT, SLOW AND FAST 2

This is the same as the equations

r1 + r2 = 1
4r1 + 5r2 = 0
3r1 + 3r2 = 3
r1 + r2 = 1

which we try to solve








1 1 1
4 5 0
3 3 3
1 1 1









→









1 1 1
0 1 −4
0 0 0
0 0 0









The system has a solution. So we cast out b4 :

B4 = B3 =

{[

1 4
3 1

]

,

[

1 5
3 1

]}

.

The k = 5 Step: Is b5 in the span of B4? I.e., can we solve

r1

[

1 4
3 1

]

+ r2

[

1 5
3 1

]

=

[

1 1
1 1

]

?

This is the same as the equations

r1 + r2 = 1
4r1 + 5r2 = 1
3r1 + 3r2 = 1
r1 + r2 = 1

which we try to solve








1 1 1
4 5 1
3 3 1
1 1 1









→









1 1 1
0 1 −4
0 0 −2
0 0 0









The system does not have a solution. So we keep b5 :

B5 =

{[

1 4
3 1

]

,

[

1 5
3 1

]

,

[

1 1
1 1

]}

.

Our answer is B5.

Now another example, in R
5.

CASTING OUT, SLOW AND FAST 3

Example 2. Find a subset of {b1, . . . ,b5} that is a basis for the span of

b1 =













1
2
1
2
1













, b2 =













1
1
1
1
1













, b3 =













2
0
2
0
2













, b4 =













1
0
0
0
0













,b5 =













1
2
3
2
3













.

Using the casting our method, we start with

B1 =



































1
2
1
2
1



































.

The k = 2 Step: Is b2 in the span of B1? Can we solve

r1













1
2
1
2
1













=













1
1
1
1
1













?

No. So b2 is a keeper:

B2 =



































1
2
1
2
1













,













1
1
1
1
1



































.

The k = 3 Step: Is b3 in the span of B2? Can we solve

r1













1
2
1
2
1













+ r2













1
1
1
1
1













=













2
0
2
0
2













?

CASTING OUT, SLOW AND FAST 4

Jumping to the augemented matrix of the resulting equations, we have













1 1 2
2 1 0
1 1 2
2 1 0
1 1 2













→













1 1 2
0 −1 −4
0 0 0
0 −1 −4
0 0 0













→













1 1 2
0 −1 −4
0 0 0
0 0 0
0 0 0













and so this has a solution. We cast-out b3 :

B3 = B2 =



































1
2
1
2
1













,













1
1
1
1
1



































.

The k = 4 Step: Is b4 in the span of B3? Can we solve

r1













1
2
1
2
1













+ r2













1
1
1
1
1













=













1
0
0
0
0













?

Jumping to the augemented matrix of the resulting equations, we have













1 1 1
2 1 0
1 1 0
2 1 0
1 1 0













→













1 1 2
0 −1 −2
0 0 −1
0 −1 −2
0 0 −1













→













1 1 2
0 1 2
0 0 1
0 0 0
0 0 0













CASTING OUT, SLOW AND FAST 5

and so there is no a solution. We keep b4 :

B4 =



































1
2
1
2
1













,













1
1
1
1
1













,













1
0
0
0
0



































.

The k = 5 Step: Is b5 in the span of B5? Can we solve

r1













1
2
1
2
1













+ r2













1
1
1
1
1













+ r3













1
0
0
0
0













=













1
2
3
2
3













?

Jumping to the augemented matrix of the resulting equations, we have












1 1 1 1
2 1 0 2
1 1 0 3
2 1 0 2
1 1 0 3













→













1 1 1 1
0 −1 −2 0
0 0 −1 2
0 −1 −2 0
0 0 −1 2













→













1 1 1 1
0 −1 −2 0
0 0 −1 2
0 0 0 0
0 0 0 0













and so there is a solution. We don’t use b5 :

B5 =



































1
2
1
2
1













,













1
1
1
1
1













,













1
0
0
0
0



































.

This is our answer.

Well that took forever.

2. FAST, BUT ONLY IN R
n

If you want to do casting out in the standard Euclidian spaces, there is a much faster
way.

(1) Put all the bk in a matrix A :

A = [b1 b2 · · · bm].

CASTING OUT, SLOW AND FAST 6

(2) Row reduce until you can see the pivot positions:

A → · · · → U.

(3) Keep bj if there is a a pivot position in column j of U.

Notice that the pivots in U tell you which columns of A to use.
Let’s repeat the last example.

Example 3. Find a subset of {b1, . . . ,b5} that is a basis for the span of

b1 =













1
2
1
2
1













, b2 =













1
1
1
1
1













, b3 =













2
0
2
0
2













, b4 =













1
0
0
0
0













,b5 =













1
2
3
2
3













.

Let

A =













1 1 2 1 1
2 1 0 0 2
1 1 2 0 3
2 1 0 0 2
1 1 2 0 3













and do the row ops needed:

A =













1 1 2 1 1
2 1 0 0 2
1 1 2 0 3
2 1 0 0 2
1 1 2 0 3













→













1 1 2 1 1
0 −1 −4 −1 0
0 0 0 −1 2
0 −1 −4 −1 0
0 0 0 −1 2













→













1 1 2 1 1
0 −1 −4 −1 0
0 0 0 −1 2
0 0 0 0 0
0 0 0 0 0













= U

There are pivots positions in columns 1, 2 and 4 and so we keep b1, b2 and b4 : Answer


































1
2
1
2
1













,













1
1
1
1
1













,













1
0
0
0
0



































.

So why did that work? I’ll not give a proof, but notice the following:

CASTING OUT, SLOW AND FAST 7

In our first solution, we tossed b3 because

−2













1
2
1
2
1













+ 4













1
1
1
1
1













=













2
0
2
0
2













If we had applied the slow algorithm to the columns of U we would have found

−2













1
0
0
0
0













+ 4













1
−1
0
0
0













=













2
−4
0
0
0













and so would have tossed the third column for exactly the same “reason.”

3. AS A TEST FOR LINEAR INDEPENDENCE

• Suppose you have m vectors v1, . . . ,vm in V. If the casting out algorithm tells you
to keep all these vectors, then the set {v1, . . . ,vm} was linearly independent to begin
with. Otherwise, it wasn’t.

• Suppose you know that V has dimension n and you have n vectors v1, . . . ,vn. If
the casting out algorithm tells you to keep all the vectors, then {v1, . . . ,vn} was a
basis for V to begin with. Otherwise, it wasn’t.

Casting out is such a pain in general that these statements are often little help. But, in R
n,

casting out is fast, so these really help. In terms of rank:
• Suppose you have m vectors v1, . . . ,vm in R

n. If

rank





| | |
v1 v2 · · · vm

| | |



 = m

then v1, . . . ,vm are linearly independent. If the rank is less, they are dependent.
• Suppose you have n vectors v1, . . . ,vn in R

n. If

rank





| | |
v1 v2 · · · vn

| | |



 = n

then v1, . . . ,vn are a basis for R
n. If the rank is less, they are not.

Recall: If you have more or less than n vectors in R
n, then you don’t have a basis.

In terms of row ops, if U = rref(A) :

• The columns of A are linearly independent ⇔ there’s a pivot in every column of U.

• The columns of A are a basis of R
n ⇔ A is n-by-n and there’s a pivot in every

column of U.

Putting together a bunch of stuff:

CASTING OUT, SLOW AND FAST 8

Theorem 1. The columns of an n-by-n matrix A are a basis for R
n

⇔ there’s a pivot in every column of U = rref(A)
⇔ A is invertible
⇔ rank(A) = n

⇔ det(A) 6= 0.

	1. Slow but general
	2. Fast, but only in Rn
	3. As a test for Linear Independence

