CASTING OUT, SLOW AND FAST

1. SLow but general

Leon barely covers the standard "casting out" method. It is an algorithm that works in any vector space V.

Input: A finite set of vectors $B=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}\right\}$ contained in V
Ouput: A subset B_{m} of B with

$$
\operatorname{span}\left(B_{m}\right)=\operatorname{span}(B)
$$

so that B_{m} is a basis for $\operatorname{span}(B)$.
Method:
(1) Find the first nonzero vector $b_{k^{\prime}}$ in B. Let $B_{k^{\prime}}=\left\{b_{k^{\prime}}\right\}$ and let $k=k^{\prime}+1$. (Cast out leading zero vectors).
(2)
(a) If b_{k} is in $\operatorname{span}\left(B_{k-1}\right)$ then let $B_{k}=B_{k-1}$. (Cast out).
(b) If b_{k} is not in $\operatorname{span}\left(B_{k-1}\right)$ then let $B_{k}=B_{k-1} \cup\left\{\mathbf{b}_{k}\right\}$. (Keep)
(3) Let $k=k+1$.
(4) If $k \leq m$ repeat 2 and 3 .

Example 1. Suppose the vector space is that of all 2-by-2 matrices. Find a subset of $\left\{b_{1}, \ldots, b_{5}\right\}$ that is a basis for the span of $\left\{b_{1}, \ldots, b_{5}\right\}$, where

$$
\mathbf{b}_{1}=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right], \mathbf{b}_{2}=\left[\begin{array}{ll}
1 & 4 \\
3 & 1
\end{array}\right], \mathbf{b}_{3}=\left[\begin{array}{ll}
1 & 5 \\
3 & 1
\end{array}\right], \mathbf{b}_{4}=\left[\begin{array}{ll}
1 & 0 \\
3 & 1
\end{array}\right], \mathbf{b}_{5}=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] .
$$

Using the casting our method, we throw out \mathbf{b}_{1} and start with $\left\{\mathbf{b}_{2}\right\}$:

$$
B_{2}=\left\{\left[\begin{array}{ll}
1 & 4 \\
3 & 1
\end{array}\right]\right\} .
$$

The $k=3$ Step: Is \mathbf{b}_{3} in the span of B_{2} ? I.e., can we solve

$$
r_{1}\left[\begin{array}{ll}
1 & 4 \\
3 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 5 \\
3 & 1
\end{array}\right] ?
$$

Well, certainly not. We get $r_{1}=1$ and $4 r_{1}=5$ and can't do both. The new vector (matrix) is not in the span of the current set, so add it:

$$
B_{3}=\left\{\left[\begin{array}{ll}
1 & 4 \\
3 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 5 \\
3 & 1
\end{array}\right]\right\} .
$$

The $k=4$ Step: Is \mathbf{b}_{4} in the span of B_{3} ? I.e., can we solve

$$
r_{1}\left[\begin{array}{ll}
1 & 4 \\
3 & 1
\end{array}\right]+r_{2}\left[\begin{array}{ll}
1 & 5 \\
3 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
3 & 1
\end{array}\right] ?
$$

This is the same as the equations

$$
\begin{gathered}
r_{1}+r_{2}=1 \\
4 r_{1}+5 r_{2}=0 \\
3 r_{1}+3 r_{2}=3 \\
r_{1}+r_{2}=1
\end{gathered}
$$

which we try to solve

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
4 & 5 & 0 \\
3 & 3 & 3 \\
1 & 1 & 1
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & -4 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

The system has a solution. So we cast out \mathbf{b}_{4} :

$$
B_{4}=B_{3}=\left\{\left[\begin{array}{ll}
1 & 4 \\
3 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 5 \\
3 & 1
\end{array}\right]\right\}
$$

The $k=5$ Step: Is \mathbf{b}_{5} in the span of B_{4} ? I.e., can we solve

$$
r_{1}\left[\begin{array}{ll}
1 & 4 \\
3 & 1
\end{array}\right]+r_{2}\left[\begin{array}{ll}
1 & 5 \\
3 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] ?
$$

This is the same as the equations

$$
\begin{gathered}
r_{1}+r_{2}=1 \\
4 r_{1}+5 r_{2}=1 \\
3 r_{1}+3 r_{2}=1 \\
r_{1}+r_{2}=1
\end{gathered}
$$

which we try to solve

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
4 & 5 & 1 \\
3 & 3 & 1 \\
1 & 1 & 1
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & -4 \\
0 & 0 & -2 \\
0 & 0 & 0
\end{array}\right]
$$

The system does not have a solution. So we keep \mathbf{b}_{5} :

$$
B_{5}=\left\{\left[\begin{array}{ll}
1 & 4 \\
3 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 5 \\
3 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\right\}
$$

Our answer is B_{5}.

Now another example, in \mathbb{R}^{5}.

Example 2. Find a subset of $\left\{b_{1}, \ldots, b_{5}\right\}$ that is a basis for the span of

$$
\mathbf{b}_{1}=\left[\begin{array}{l}
1 \\
2 \\
1 \\
2 \\
1
\end{array}\right], \mathbf{b}_{2}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right], \mathbf{b}_{3}=\left[\begin{array}{l}
2 \\
0 \\
2 \\
0 \\
2
\end{array}\right], \mathbf{b}_{4}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right], \mathbf{b}_{5}=\left[\begin{array}{l}
1 \\
2 \\
3 \\
2 \\
3
\end{array}\right] .
$$

Using the casting our method, we start with

$$
B_{1}=\left\{\left[\begin{array}{l}
1 \\
2 \\
1 \\
2 \\
1
\end{array}\right]\right\} .
$$

The $k=2$ Step: Is \mathbf{b}_{2} in the span of B_{1} ? Can we solve

$$
r_{1}\left[\begin{array}{l}
1 \\
2 \\
1 \\
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right] ?
$$

No. So \mathbf{b}_{2} is a keeper:

$$
B_{2}=\left\{\left[\begin{array}{l}
1 \\
2 \\
1 \\
2 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right]\right\}
$$

The $k=3$ Step: Is \mathbf{b}_{3} in the span of B_{2} ? Can we solve

$$
r_{1}\left[\begin{array}{l}
1 \\
2 \\
1 \\
2 \\
1
\end{array}\right]+r_{2}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
2 \\
0 \\
2 \\
0 \\
2
\end{array}\right] ?
$$

Jumping to the augemented matrix of the resulting equations, we have

$$
\begin{aligned}
{\left[\begin{array}{lll}
1 & 1 & 2 \\
2 & 1 & 0 \\
1 & 1 & 2 \\
2 & 1 & 0 \\
1 & 1 & 2
\end{array}\right] } & \rightarrow\left[\begin{array}{ccc}
1 & 1 & 2 \\
0 & -1 & -4 \\
0 & 0 & 0 \\
0 & -1 & -4 \\
0 & 0 & 0
\end{array}\right] \\
& \rightarrow\left[\begin{array}{ccc}
1 & 1 & 2 \\
0 & -1 & -4 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

and so this has a solution. We cast-out \mathbf{b}_{3} :

$$
B_{3}=B_{2}=\left\{\left[\begin{array}{l}
1 \\
2 \\
1 \\
2 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right]\right\}
$$

The $k=4$ Step: Is \mathbf{b}_{4} in the span of B_{3} ? Can we solve

$$
r_{1}\left[\begin{array}{l}
1 \\
2 \\
1 \\
2 \\
1
\end{array}\right]+r_{2}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right] ?
$$

Jumping to the augemented matrix of the resulting equations, we have

$$
\begin{aligned}
{\left[\begin{array}{lll}
1 & 1 & 1 \\
2 & 1 & 0 \\
1 & 1 & 0 \\
2 & 1 & 0 \\
1 & 1 & 0
\end{array}\right] } & \rightarrow\left[\begin{array}{ccc}
1 & 1 & 2 \\
0 & -1 & -2 \\
0 & 0 & -1 \\
0 & -1 & -2 \\
0 & 0 & -1
\end{array}\right] \\
& \rightarrow\left[\begin{array}{lcc}
1 & 1 & 2 \\
0 & 1 & 2 \\
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

and so there is no a solution. We keep b_{4} :

$$
B_{4}=\left\{\left[\begin{array}{l}
1 \\
2 \\
1 \\
2 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]\right\}
$$

The $k=5$ Step: Is \mathbf{b}_{5} in the span of B_{5} ? Can we solve

$$
r_{1}\left[\begin{array}{l}
1 \\
2 \\
1 \\
2 \\
1
\end{array}\right]+r_{2}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right]+r_{3}\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
3 \\
2 \\
3
\end{array}\right] ?
$$

Jumping to the augemented matrix of the resulting equations, we have

$$
\begin{aligned}
{\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
2 & 1 & 0 & 2 \\
1 & 1 & 0 & 3 \\
2 & 1 & 0 & 2 \\
1 & 1 & 0 & 3
\end{array}\right] } & \rightarrow\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & -1 & -2 & 0 \\
0 & 0 & -1 & 2 \\
0 & -1 & -2 & 0 \\
0 & 0 & -1 & 2
\end{array}\right] \\
& \rightarrow\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & -1 & -2 & 0 \\
0 & 0 & -1 & 2 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

and so there is a solution. We don't use \mathbf{b}_{5} :

$$
B_{5}=\left\{\left[\begin{array}{l}
1 \\
2 \\
1 \\
2 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]\right\}
$$

This is our answer.

Well that took forever.

2. FAST, BUT ONLY IN \mathbb{R}^{n}

If you want to do casting out in the standard Euclidian spaces, there is a much faster way.
(1) Put all the \mathbf{b}_{k} in a matrix A :

$$
A=\left[\begin{array}{llll}
\mathbf{b}_{1} & \mathbf{b}_{2} & \cdots & \mathbf{b}_{m}
\end{array}\right]
$$

(2) Row reduce until you can see the pivot positions:

$$
A \rightarrow \cdots \rightarrow U
$$

(3) Keep b_{j} if there is a a pivot position in column j of U.

Notice that the pivots in U tell you which columns of A to use.
Let's repeat the last example.
Example 3. Find a subset of $\left\{b_{1}, \ldots, b_{5}\right\}$ that is a basis for the span of

$$
\mathbf{b}_{1}=\left[\begin{array}{l}
1 \\
2 \\
1 \\
2 \\
1
\end{array}\right], \mathbf{b}_{2}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right], \mathbf{b}_{3}=\left[\begin{array}{c}
2 \\
0 \\
2 \\
0 \\
2
\end{array}\right], \mathbf{b}_{4}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right], \mathbf{b}_{5}=\left[\begin{array}{c}
1 \\
2 \\
3 \\
2 \\
3
\end{array}\right]
$$

Let

$$
A=\left[\begin{array}{lllll}
1 & 1 & 2 & 1 & 1 \\
2 & 1 & 0 & 0 & 2 \\
1 & 1 & 2 & 0 & 3 \\
2 & 1 & 0 & 0 & 2 \\
1 & 1 & 2 & 0 & 3
\end{array}\right]
$$

and do the row ops needed:

$$
\begin{aligned}
A=\left[\begin{array}{lllll}
1 & 1 & 2 & 1 & 1 \\
2 & 1 & 0 & 0 & 2 \\
1 & 1 & 2 & 0 & 3 \\
2 & 1 & 0 & 0 & 2 \\
1 & 1 & 2 & 0 & 3
\end{array}\right] & \rightarrow\left[\begin{array}{ccccc}
1 & 1 & 2 & 1 & 1 \\
0 & -1 & -4 & -1 & 0 \\
0 & 0 & 0 & -1 & 2 \\
0 & -1 & -4 & -1 & 0 \\
0 & 0 & 0 & -1 & 2
\end{array}\right] \\
& \rightarrow\left[\begin{array}{ccccc}
1 & 1 & 2 & 1 & 1 \\
0 & -1 & -4 & -1 & 0 \\
0 & 0 & 0 & -1 & 2 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]=U
\end{aligned}
$$

There are pivots positions in columns 1,2 and 4 and so we keep $\mathbf{b}_{1}, \mathbf{b}_{2}$ and \mathbf{b}_{4} : Answer

$$
\left\{\left[\begin{array}{l}
1 \\
2 \\
1 \\
2 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]\right\}
$$

So why did that work? I'll not give a proof, but notice the following:

In our first solution, we tossed \mathbf{b}_{3} because

$$
-2\left[\begin{array}{l}
1 \\
2 \\
1 \\
2 \\
1
\end{array}\right]+4\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
2 \\
0 \\
2 \\
0 \\
2
\end{array}\right]
$$

If we had applied the slow algorithm to the columns of U we would have found

$$
-2\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+4\left[\begin{array}{c}
1 \\
-1 \\
0 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
2 \\
-4 \\
0 \\
0 \\
0
\end{array}\right]
$$

and so would have tossed the third column for exactly the same "reason."

3. As a test for Linear Independence

- Suppose you have m vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}$ in V. If the casting out algorithm tells you to keep all these vectors, then the set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}\right\}$ was linearly independent to begin with. Otherwise, it wasn't.
- Suppose you know that V has dimension n and you have n vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$. If the casting out algorithm tells you to keep all the vectors, then $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ was a basis for V to begin with. Otherwise, it wasn't.
Casting out is such a pain in general that these statements are often little help. But, in \mathbb{R}^{n}, casting out is fast, so these really help. In terms of rank:
- Suppose you have m vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}$ in \mathbb{R}^{n}. If

$$
\operatorname{rank}\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{m} \\
\mid & \mid & & \mid
\end{array}\right]=m
$$

then $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}$ are linearly independent. If the rank is less, they are dependent.

- Suppose you have n vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ in \mathbb{R}^{n}. If

$$
\operatorname{rank}\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{n} \\
\mid & \mid & & \mid
\end{array}\right]=n
$$

then $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are a basis for \mathbb{R}^{n}. If the rank is less, they are not.
Recall: If you have more or less than n vectors in \mathbb{R}^{n}, then you don't have a basis.
In terms of row ops, if $U=\operatorname{rref}(A)$:

- The columns of A are linearly independent \Leftrightarrow there's a pivot in every column of U.
- The columns of A are a basis of $\mathbb{R}^{n} \Leftrightarrow A$ is n-by- n and there's a pivot in every column of U.
Putting together a bunch of stuff:

Theorem 1. The columns of an n-by-n matrix A are a basis for \mathbb{R}^{n}
\Leftrightarrow there's a pivot in every column of $U=\operatorname{rref}(A)$
$\Leftrightarrow A$ is invertible
$\Leftrightarrow \operatorname{rank}(A)=n$
$\Leftrightarrow \operatorname{det}(A) \neq 0$.

