CHANGE OF BASIS EXAMPLE

1. A Small Example

In this section we will deal with the vector space

$$
V=\left\{\left.\left[\begin{array}{cc}
\alpha & \beta \\
0 & \delta
\end{array}\right] \right\rvert\, \alpha, \beta \text { and } \delta \text { are real }\right\} .
$$

In other words, V is the vector space of all upper-triangular two-by-two matrices.
Here is (without proof) an ordered basis $\mathcal{B}=\left\{B_{1}, B_{2}, B_{2}\right\}$ of V :

$$
B_{1}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right], \quad B_{2}=\left[\begin{array}{ll}
0 & 2 \\
0 & 2
\end{array}\right], \quad B_{1}=\left[\begin{array}{ll}
0 & 0 \\
0 & 3
\end{array}\right]
$$

Here is another basis, $\mathcal{C}=\left\{C_{1}, C_{2}, C_{3}\right\}$ of V :

$$
C_{1}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right], \quad C_{2}=\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right], \quad C_{1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] .
$$

Let's find A, the transition matrix from \mathcal{B} coordinates to \mathcal{C} coordinates.
We need to solve three equations, since V is three-dimensional. They all of are the form

$$
r \text { new }_{1}+\text { new }_{2}+\text { tnew }_{3}=\text { old }_{*} .
$$

Task 1: Find the one solution to

$$
r\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]+s\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]+t\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

Task 2: Find the one solution to

$$
r\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]+s\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]+t\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 2 \\
0 & 2
\end{array}\right] .
$$

Task 3: Find the one solution to

$$
r\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]+s\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]+t\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 3
\end{array}\right] .
$$

So here's the work:
Doing Task 1: From

$$
r\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]+s\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]+t\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

we get

$$
\left[\begin{array}{ll}
r & r \\
0 & r
\end{array}\right]+\left[\begin{array}{ll}
s & s \\
0 & 0
\end{array}\right]+\left[\begin{array}{ll}
t & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

and so

$$
\begin{aligned}
{\left[\begin{array}{cc}
r+s+t & r+s \\
0 & r
\end{array}\right] } & =\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] \\
r+s+t & =1 \\
r+s & =1 \\
r & =1 \\
0 & =0
\end{aligned}
$$

We can solve this in our heads (the last equation is not helpful):

$$
r=1, s=0, t=0
$$

These numbers form the $\mathbf{1}^{\text {st }}$ column of A :

$$
A=\left[\begin{array}{lll}
1 & ? & ? \\
0 & ? & ? \\
0 & ? & ?
\end{array}\right]
$$

Doing Task 2: From

$$
r\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]+s\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]+t\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 2 \\
0 & 2
\end{array}\right]
$$

we get

$$
\left[\begin{array}{ll}
r & r \\
0 & r
\end{array}\right]+\left[\begin{array}{ll}
s & s \\
0 & 0
\end{array}\right]+\left[\begin{array}{ll}
t & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 2 \\
0 & 2
\end{array}\right]
$$

and so

$$
\begin{aligned}
{\left[\begin{array}{cc}
r+s+t & r+s \\
0 & r
\end{array}\right] } & =\left[\begin{array}{ll}
0 & 2 \\
0 & 2
\end{array}\right] \\
r+s+t & =0 \\
r+s & =2 \\
r & =2
\end{aligned}
$$

Let's use the array stuff to solve:

$$
\begin{array}{cll}
{\left[\begin{array}{llll}
1 & 1 & 1 & 0 \\
1 & 1 & 0 & 2 \\
1 & 0 & 0 & 2
\end{array}\right]} & \longrightarrow & {\left[\begin{array}{cccc}
1 & 0 & 0 & 2 \\
1 & 1 & 0 & 2 \\
1 & 1 & 1 & 0
\end{array}\right]} \\
& \longrightarrow & {\left[\begin{array}{cccc}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & -2
\end{array}\right]}
\end{array}
$$

so

$$
\begin{aligned}
r & =2 \\
s & =0 \\
t & =-2
\end{aligned}
$$

These numbers tell us the $2^{\text {nd }}$ column of A :

$$
A=\left[\begin{array}{ccc}
1 & 2 & ? \\
0 & 0 & ? \\
0 & -2 & ?
\end{array}\right]
$$

Doing Task 3: From

$$
r\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]+s\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]+t\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 3
\end{array}\right]
$$

we get

$$
\left[\begin{array}{ll}
r & r \\
0 & r
\end{array}\right]+\left[\begin{array}{ll}
s & s \\
0 & 0
\end{array}\right]+\left[\begin{array}{ll}
t & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 3
\end{array}\right]
$$

and so

$$
\begin{aligned}
{\left[\begin{array}{cc}
r+s+t & r+s \\
0 & r
\end{array}\right] } & =\left[\begin{array}{ll}
0 & 0 \\
0 & 3
\end{array}\right] \\
r+s+t & =0 \\
r+s & =0 \\
r & =3
\end{aligned}
$$

Let's do this in our heads:

$$
\begin{aligned}
r & =3 \\
s & =-3 \\
t & =0
\end{aligned}
$$

These numbers tell us the $\boldsymbol{3}^{\text {rd }}$ column of A :

$$
A=\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & 0 & -3 \\
0 & -2 & 0
\end{array}\right]
$$

Done!
Clearly this had a lot of repetitive stuff, and there are much shorter was to do this.

2. A bigger Example

In this section we will deal with the vector space

$$
V=\left\{\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6} \\
x_{7} \\
x_{8}
\end{array}\right] \left\lvert\, \begin{array}{c}
\\
\text { the } x_{j} \text { are real } \\
x_{5}=x_{1} \\
x_{6}=x_{2} \\
x_{7}=x_{3} \\
x_{8}=x_{4}
\end{array}\right.\right\}
$$

In other words, V is the vector space of all vectors in 8 -space whose last four elements equal the first four.

Here is (without proof) an ordered basis $\mathcal{B}=\left\{b_{1}, b_{2}, b_{2}, b_{3}\right\}$ of V :

$$
b_{1}=\left[\begin{array}{c}
1 \\
-1 \\
1 \\
-1 \\
1 \\
-1 \\
1 \\
-1
\end{array}\right], b_{2}=\left[\begin{array}{c}
1 \\
0 \\
-1 \\
0 \\
1 \\
0 \\
-1 \\
0
\end{array}\right], b_{3}=\left[\begin{array}{c}
0 \\
1 \\
0 \\
-1 \\
0 \\
1 \\
0 \\
-1
\end{array}\right], b_{4}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

Here is another basis, $\mathcal{C}=\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\}$ of V :

$$
c_{1}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right], c_{2}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right], c_{3}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0 \\
1 \\
1 \\
0 \\
0
\end{array}\right], c_{4}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right] .
$$

Let's find A, the transition matrix from \mathcal{B} coordinates to \mathcal{C} coordinates.
We need to solve four equations of are the form

$$
r_{1} \text { new }_{1}+r_{2} \text { new }_{2}+r_{3} \text { new }_{3}+r_{4} \text { new }_{4}=\text { old }_{*} .
$$

Equation(s) 1:

$$
r_{1}\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+r_{2}\left[\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right]+r_{3}\left[\begin{array}{l}
1 \\
1 \\
0 \\
0 \\
1 \\
1 \\
0 \\
0
\end{array}\right]+r_{4}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1 \\
1 \\
-1 \\
1 \\
-1 \\
1 \\
-1
\end{array}\right]
$$

so

$$
\begin{aligned}
r_{1} \quad r_{3}+r_{4} & =1 \\
r_{3}+r_{4} & =-1 \\
& +r_{4}
\end{aligned}=1
$$

In our heads, we solve:

$$
\begin{aligned}
& r_{1}=2 \\
& r_{2}=2 \\
& r_{3}=0 \\
& r_{4}=-1
\end{aligned}
$$

So far, we have figured out:

$$
A=\left[\begin{array}{cccc}
2 & ? & ? & ? \\
2 & ? & ? & ? \\
0 & ? & ? & ? \\
-1 & ? & ? & ?
\end{array}\right]
$$

Equation(s) 2:

$$
r_{1}\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+r_{2}\left[\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right]+r_{3}\left[\begin{array}{l}
1 \\
1 \\
0 \\
0 \\
1 \\
1 \\
0 \\
0
\end{array}\right]+r_{4}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
1 \\
0 \\
-1 \\
0 \\
1 \\
0 \\
-1 \\
0
\end{array}\right]
$$

so

$$
\begin{aligned}
r_{1}+r_{3}+r_{4} & =1 \\
r_{3} & +r_{4}
\end{aligned}=0 .
$$

In our heads, we solve:

$$
\begin{aligned}
& r_{1}=1 \\
& r_{2}=-1 \\
& r_{3}=0 \\
& r_{4}=0
\end{aligned}
$$

So far, we have figured out:

$$
A=\left[\begin{array}{cccc}
2 & 1 & ? & ? \\
2 & -1 & ? & ? \\
0 & 0 & ? & ? \\
-1 & 0 & ? & ?
\end{array}\right]
$$

Equation(s) 3:

$$
r_{1}\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+r_{2}\left[\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right]+r_{3}\left[\begin{array}{l}
1 \\
1 \\
0 \\
0 \\
1 \\
1 \\
0 \\
0
\end{array}\right]+r_{4}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
0 \\
1 \\
0 \\
-1 \\
0 \\
1 \\
0 \\
-1
\end{array}\right]
$$

so

$$
\begin{aligned}
& \begin{aligned}
& r_{1}+r_{3}+r_{4}=0 \\
& r_{3}+r_{4}=1 \\
& r_{2}+r_{4}=0
\end{aligned} \\
& r_{4}=-1
\end{aligned}
$$

In our heads, we solve:

$$
\begin{aligned}
& r_{1}=-1 \\
& r_{2}=1 \\
& r_{3}=2 \\
& r_{4}=-1
\end{aligned}
$$

So far, we have figured out:

$$
A=\left[\begin{array}{cccc}
2 & 1 & -1 & ? \\
2 & -1 & 1 & ? \\
0 & 0 & 2 & ? \\
-1 & 0 & -1 & ?
\end{array}\right]
$$

Equation(s) 4:

$$
r_{1}\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+r_{2}\left[\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right]+r_{3}\left[\begin{array}{l}
1 \\
1 \\
0 \\
0 \\
1 \\
1 \\
0 \\
0
\end{array}\right]+r_{4}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

so

$$
\begin{aligned}
r_{1} \quad r_{3}+r_{4} & =1 \\
r_{3}+r_{4} & =1 \\
r_{2} & +r_{4}=1 \\
r_{4} & =1
\end{aligned} .
$$

In our heads, we solve:

$$
\begin{aligned}
& r_{1}=0 \\
& r_{2}=0 \\
& r_{3}=0 \\
& r_{4}=1
\end{aligned}
$$

The answer is that the transition matrix is

$$
A=\left[\begin{array}{cccc}
2 & 1 & -1 & 0 \\
2 & -1 & 1 & 0 \\
0 & 0 & 2 & 0 \\
-1 & 0 & -1 & 1
\end{array}\right]
$$

