AR, MA and ARMA models

- The autoregressive process of order p or $A R(p)$ is defined by the equation

$$
X_{t}=\sum_{j=1}^{p} \phi_{j} X_{t-j}+\omega_{t}
$$

where $\omega_{t} \sim N\left(0, \sigma^{2}\right)$

- $\phi=\left(\phi_{1}, \phi_{2}, \ldots, \phi_{p}\right)$ is the vector of model coefficients and p is a non-negative integer.
- The AR model establishes that a realization at time t is a linear combination of the p previous realization plus some noise term.
- For $p=0, X_{t}=\omega_{t}$ and there is no autoregression term.
- The lag operator is denoted by B and used to express lagged values of the process so $B X_{t}=X_{t-1}$, $B^{2} X_{t}=X_{t-2}, B^{3} X_{t}=X_{t-3}, \ldots, B^{d} X_{t-d}$.
- If we define

$$
\Phi(B)=1-\sum_{j=1}^{p} \phi_{j} B^{j}=1-\phi_{1} B-\phi_{2} B^{2}-\ldots-\phi_{p} B^{p}
$$

the $\mathrm{AR}(\mathrm{p})$ process is given by the equation $\Phi(B) X_{t}=\omega_{t} ; t=1, \ldots, n$.

- $\Phi(B)$ is known as the characteristic polynomial of the process and its roots determine when the process is stationary or not.
- The moving average process of order q or $M A(q)$ is
defined as

$$
X_{t}=\omega_{t}+\sum_{j=1}^{q} \theta_{j} \omega_{t-j}
$$

- Under this model, the observed process depends on previous $\omega_{t}^{\prime} s$
- $M A(q)$ can define correlated noise structure in our data and goes beyond the traditional assumption where errors are iid.
- In lag operator notation, the $M A(q)$ process is given by the equation $X_{t}=\Theta(B) \omega_{t}$ where $\Theta(B)=1+\sum_{j=1}^{q} \theta_{j} B^{j}$.
- The general autoregressive moving average process of orders p and q or $A R M A(p, q)$ combines both $A R$ and $M A$ models into a unique representation.
- The ARMA process of orders p and q is defined as

$$
X_{t}=\sum_{j=1}^{p} \phi_{j} X_{t-j}+\sum_{j=1}^{q} \theta_{j} \omega_{t-j}+\omega_{t}
$$

- In lag operator notation, the $\operatorname{ARMA}(p, q)$ process is given by $\Phi(B) X_{t}=\Theta(B) \omega_{t}, t=1, \ldots, n$
- Lets focus on the AR process and its characteristic polynomial.
- The characteristic polynomial can be expressed as:

$$
\Phi(B)=\prod_{i=1}^{p}\left(1-\alpha_{i} B\right)
$$

where the $\alpha^{\prime} s$ are the reciprocal roots.

- If $\beta_{1}, \beta_{2}, \ldots, \beta_{p}$ are such that $\Phi\left(\beta_{i}\right)=0$ (roots of the
polynomial) then $\beta_{1}=1 / \alpha_{1}, \beta_{2}=1 / \alpha_{2}, \ldots, \beta_{p}=1 / \alpha_{p}$
- Theorem: If $X_{t} \sim A R(p), X_{t}$ is a stationary process if and only if the modulus of all the roots of the characteristic polynomial are greater than one, i.e. if $\left\|\beta_{i}\right\|>1$ for all $i=1,2, \ldots, p$ or equivalently if $\left\|\alpha_{i}\right\|<1, i=1,2, \ldots p$.
- The $\alpha_{i}^{\prime} s$ are also known as the poles of the AR process.
- This theorem follows from the general linear process theory.
- Some of the poles or reciprocal roots can be real number and some can be complex numbers and we need to distinguish between the 2 cases.
- For the complex case, we will use the representation

$$
\alpha_{i}=r_{i} \exp \left(\pm \omega_{i} i\right), i=1, \ldots, C
$$

so C is the total number of conjugate pairs and $2 C$ is the total number of complex poles.

- r_{i} is the modulus of α_{i} and ω_{i} its frequency.
- The real reciprocal roots are denoted as

$$
\alpha_{i}=r_{i}, i=1,2, \ldots R
$$

- Example. Consider the $\mathrm{AR}(1)$ process $X_{t}=\phi X_{t-1}+\omega_{t}$.
- In lag-operator notation this process is $(1-\phi B) X_{t}=\omega_{t}$ and the characteristic polynomial is $\Phi(B)=(1-\phi B)$.
- If $\Phi(B)=(1-\phi B)=0$, the only characteristic root is
$\beta=1 / \phi($ assuming $\phi \neq 0)$.
- The $\operatorname{AR}(1)$ process is stationary if only if $|\phi|<1$ or $-1<\phi<1$.
- The case where $\phi=1$ corresponds to a Random Walk process with a zero drift, $X_{t}=X_{t-1}+\omega_{t}$
- This is a non-stationary explosive process.
- If we recursive apply the $\mathrm{AR}(1)$ equation, the Random Walk process can be expressed as
$X_{t}=\omega_{t}+\omega_{t-1}+\omega_{t-2}+\ldots$. Then, $\operatorname{Var}\left(X_{t}\right)=\sum_{t=0}^{\infty} \sigma^{2}=\infty$.
- Example. $\operatorname{AR}(2)$ process $X_{t}=\phi_{1} X_{t-1}+\phi_{2} X_{t-2}+\omega_{t}$
- The characteristic polynomial is now

$$
\Phi(B)=\left(1-\phi_{1} B-\phi_{2} B^{2}\right)
$$

- The solutions to $\Phi(B)=0$ are

$$
\beta_{1}=\frac{-\phi_{1}+\sqrt{\phi_{1}^{2}+4 \phi_{2}}}{2 \phi_{2}} ; \beta_{2}=\frac{-\phi_{1}-\sqrt{\phi_{1}^{2}+4 \phi_{2}}}{2 \phi_{2}}
$$

- The reciprocal roots are

$$
\alpha_{1}=\frac{\phi_{1}+\sqrt{\phi_{1}^{2}+4 \phi_{2}}}{2} ; \alpha_{2}=\frac{\phi_{1}-\sqrt{\phi_{1}^{2}+4 \phi_{2}}}{2}
$$

- The $\operatorname{AR}(2)$ is stationary if and only if $\left\|\alpha_{1}\right\|<1$ and $\left|\mid \alpha_{2} \|<1\right.$
- These two conditions imply that $\left\|\alpha_{1} \alpha_{2}\right\|=\left|\phi_{2}\right|<1$ and $\left\|\alpha_{1}+\alpha_{2}\right\|=\left|\phi_{1}\right|<2$ which means $-1<\phi_{2}<1$ and $-2<\phi_{1}<2$.
- For α_{1} and α_{2} real numbers, $\phi_{1}^{2}+4 \phi_{2} \geq 0$ which implies $-1<\alpha_{2} \leq \alpha_{1}<1$ and after some algebra $\phi_{1}+\phi_{2}<1$; $\phi_{2}-\phi_{1}<1$
- In the complex case $\phi_{1}^{2}+4 \phi_{2}<0$ or $\frac{\phi_{1}^{2}}{-4}>\phi_{2}$
- If we combine all the inequalities we obtain a region bounded by the lines $\phi_{2}=1+\phi_{1} ; \phi_{2}=1-\phi_{1} ; \phi_{2}=-1$.
- This is the region where the $\operatorname{AR}(2)$ process is stationary.
- For an $\operatorname{AR}(p)$ where $p \geq 3$, the region where the process is stationary is quite abstract.
- For the stationarity condition of the MA (q) process, we need to rely on the general linear process.
- A general linear process is a random sequence X_{t} of the
form,

$$
X_{t}=\sum_{j=0}^{\infty} a_{j} \omega_{t-j}
$$

where ω_{t} is a white noise sequence with variance σ^{2}.

- In lag operator notation, the general linear is given by the expression $X_{t}=\Phi(B)^{-1} \omega_{t}$ where $\Phi(B)^{-1}=\sum_{j=0}^{\infty} a_{j} B^{j}$.
- Note firstly that by the definition of the linear process, $E\left(X_{t}\right)=0$.
- Then, the covariance between X_{t} and X_{s} is

$$
E\left[X_{t} X_{s}\right]=\sum_{j=0}^{\infty} \sum_{l=0}^{\infty} a_{j} a_{l} E\left[X_{t-j} X_{s-l}\right]
$$

$$
=\sigma^{2} \sum_{j=0}^{\infty} a_{j} a_{j+s-t} \quad ;(s \geq t)
$$

- The last expression depends on t and s only through the difference $s-t$. Therefore, the process is stationary if $\sum_{j=0}^{\infty} a_{j} a_{j+k}$ is finite for all non-negative integers k
- Setting $k=0$ we require that $\sum_{j=0}^{\infty} a_{j}^{2}<\infty$
- Given that a correlation is always between -1 and 1 ,

$$
\left|\gamma_{k}\right| \leq \gamma_{0}
$$

so if $\gamma_{0}<\infty$ then $\sum_{j=0}^{\infty} a_{j} a_{j+k}<\infty$.

- Then X_{t} is stationary if and only if $\sum_{j=0}^{\infty} a_{j}^{2}<\infty$
- The MA (q) process can be written as a general linear
process of the form $X_{t}=\sum_{j=0}^{\infty} a_{j} \omega_{t-j}$ where

$$
a_{j}= \begin{cases}\theta_{j} & \mathrm{j}=0, \ldots, \mathrm{q} \\ 0 & \mathrm{j}=\mathrm{q}+1, \mathrm{q}+2, \ldots\end{cases}
$$

with $\theta_{0}=1$.

- For the MA (q) process $\sum_{j=0}^{\infty} a_{j}^{2}=\sum_{j=0}^{q} \theta_{j}^{2}<\infty$ so a moving average process is always stationary.
- For the ARMA (p, q) process given by $\Phi(B) X_{t}=\Theta(B) \omega_{t}$ X_{t} is stationary if only if the roots of $\Phi(B)=0$ have all modulus greater than 1 or all the reciprocal roots have a modulus less than one.
- A related concept to stationary linear process is invertible process.
- Definition: A process X_{t} is invertible if

$$
X_{t}=\sum_{j=1}^{\infty} a_{j} X_{t-j}+\omega_{t}
$$

with the restriction that $\sum_{j=1}^{\infty} a_{j}^{2}<\infty$

- Basically, an invertible process is an infinite autoregression.
- By definition the $\mathrm{AR}(p)$ is invertible. We can set $a_{1}=\phi_{1}, a_{2}=\phi_{2}, \ldots a_{p}=\phi_{p}$ and $a_{j}=0, j>p$. Then $\sum_{j=1}^{\infty} a_{j}^{2}=\sum_{=1}^{p} \phi_{j}^{2}$ which is finite.
- For an MA (q) process we have $X_{t}=\Theta(B) \omega_{t}$. If we find a polynomial $\Theta(B)^{-1}$ such that $\Theta(B) \Theta(B)^{-1}=1$ then we can invert the process since $\Theta(B)^{-1} X_{t}=\omega_{t}$
- The MA (q) process is invertible if and only if the roots of $\Theta(B)$ have all modulus greater than one.
- To illustrate this last point consider the MA(1) process $X_{t}=(1-\theta B) \omega_{t}$
- If $|\theta|<1$ then

$$
\Theta(B)^{-1}=\frac{1}{(1-\theta B)}=\sum_{j=0}^{\infty} \theta^{j} B^{j}
$$

- Since $|\theta|<1$ then $\sum_{j=0}^{\infty} \theta^{j}<\infty$ and so the process is invertible and has the representation

$$
X_{t}=\sum_{j=1}^{\infty} \theta^{j} X_{t-j}+\omega_{t}
$$

- The $\operatorname{ARMA}(p, q)$ process is invertible whenever the MA
part of the process is invertible, i.e. when $\Theta(B)$ has reciprocal roots with modulus less than one.

Autocorrelation and Partial Autocorrelation

- The partial autocorrelation function (PACF) of a process Z_{t} is defined as $P_{k}=\operatorname{Corr}\left(Z_{t}, Z_{t+k} \mid Z_{t+1}, \ldots, Z_{t+k-1}\right) ; k=0,1,2,3, \ldots$
- This PACF is equal to the ordinary correlation between $Z_{t}-\hat{Z}_{t}$ and $Z_{t+k}-\hat{Z_{t+k}}$ where $\hat{Z_{t}}$ and $\hat{Z_{t+k}}$ are the "best" linear estimators for Z_{t} and Z_{t+k} respectively.
- This PACF can also be derived through an autoregressive model of order k

$$
Z_{t+k}=\phi_{k 1} Z_{t+k-1}+\phi_{k 2} Z_{t+k-2}+\ldots+\phi_{k k} Z_{t}+\omega_{t+k}
$$

- The coefficients $\phi_{k 1}, \phi_{k 2}, \ldots, \phi_{k k}$ define the PACF.
- We have a set of linear equations for which the solution can be obtained via Cramer's Rule.
- R/S-plus include an option to compute the PACF.
> acf(x,type=''partial'')
- The partial autocorrelation can be derived as follows. Suppose that Z_{t} is zero mean stationary process.
- Consider a regression model where Z_{t+k} is regressed on k lagged variables $Z_{t+k-1}, Z_{t+k-2}, \ldots, Z_{t}$, i.e.,

$$
Z_{t+k}=\phi_{k 1} Z_{t+k-1}+\phi_{k 2} Z_{t+k-2}+\ldots+\phi_{k k} Z_{t}+\omega_{t+k}
$$

- $\phi_{k i}$ denotes the i-th regression parameter and ω_{t+k} is a normal error term uncorrelated with Z_{t+k-j} for $j \geq 1$.
- Multiplying Z_{t+k-j} on both sides of the above regression equation and taking the expectation, we get

$$
\gamma_{j}=\phi_{k 1} \gamma_{j-1}+\phi_{k 2} \gamma_{j-2}+\ldots+\phi_{k k} \gamma_{j-k}
$$

- If we divide by γ_{0} we get,

$$
\rho_{j}=\phi_{k 1} \rho_{j-1}+\phi_{k 2} \rho_{j-2}+\ldots+\phi_{k k} \rho_{j-k}
$$

- For $j=1,2, \ldots, k$, we have the following system of equations:

$$
\begin{aligned}
\rho_{1} & =\phi_{k 1} \rho_{0}+\phi_{k 2} \rho_{1}+\ldots+\phi_{k k} \rho_{k-1} \\
\rho_{2} & =\phi_{k 1} \rho_{1}+\phi_{k 2} \rho_{0}+\ldots+\phi_{k k} \rho_{k-2} \\
\vdots & \\
\rho_{k} & =\phi_{k 1} \rho_{k-1}+\phi_{k 2} \rho_{k-2}+\ldots+\phi_{k k} \rho_{0}
\end{aligned}
$$

- Using Cramer's rule successively for $k=1,2, \ldots$, we have

$$
\phi_{11}=\rho_{1}
$$

$$
\begin{aligned}
\phi_{22} & =\frac{\left|\begin{array}{ll}
1 & \rho_{1} \\
\rho_{1} & \rho_{2}
\end{array}\right|}{\left|\begin{array}{ll}
1 & \rho_{1} \\
\rho_{1} & \rho_{1}
\end{array}\right|} \\
\phi_{33} & =\frac{\left|\begin{array}{lll}
1 & \rho_{1} & \rho_{1} \\
\rho_{1} & 1 & \rho_{2} \\
\rho_{2} & \rho_{1} & \rho_{3}
\end{array}\right|}{\left|\begin{array}{lll}
1 & \rho_{1} & \rho_{2} \\
\rho_{1} & 1 & \rho_{1} \\
\rho_{2} & \rho_{1} & 1
\end{array}\right|}
\end{aligned}
$$

$$
\phi_{k k}=\frac{\left|\begin{array}{llllll}
1 & \rho_{1} & \rho_{2} & \ldots & \rho_{k-2} & \rho_{1} \\
\rho_{1} & 1 & \rho_{1} & \ldots & \rho_{k-3} & \rho_{2} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\rho_{k-1} & \rho_{k-2} & \rho_{k-3} & \ldots & \rho_{1} & \rho_{k}
\end{array}\right|}{\left|\begin{array}{llllll}
1 & \rho_{1} & \rho_{2} & \ldots & \rho_{k-2} & \rho_{k-1} \\
\rho_{1} & 1 & \rho_{1} & \ldots & \rho_{k-3} & \rho_{k-2} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\rho_{k-1} & \rho_{k-2} & \rho_{k-3} & \ldots & \rho_{1} & 1
\end{array}\right|}
$$

- As a function of $k, \phi_{k k}$ is usually referred to as the partial autocorrelation function (PACF).
- A computer package will produce an estimate of $\phi_{k, k}$ using $\hat{\rho_{k}}$
- Example. Consider the stationary $\operatorname{AR}(1)$ process , $X_{t}=\alpha X_{t-1}+\omega_{t}$ with $-1<\alpha<1$. (change ϕ to α)
- Previously, we establish that the autocorrelation function for an $\operatorname{AR}(1)$ is $\rho_{k}=\alpha^{k}$.
- If we apply Cramer's rule $\phi_{11}=\rho_{1}=\alpha$.
- Also

$$
\phi_{22}=\frac{\left|\begin{array}{cc}
1 & \alpha \\
\alpha & \alpha^{2}
\end{array}\right|}{\left|\begin{array}{ll}
1 & \alpha \\
\alpha & 1
\end{array}\right|}=0
$$

- In fact, it can be checked that $\phi_{k k}=0$ for any $k \geq 2$.
- The result is that for the $\operatorname{AR}(1)$

$$
\phi_{k k}= \begin{cases}\alpha & \mathrm{k}=1 \\ 0 & k \geq 2\end{cases}
$$

so the partial autocorrelation of an $\operatorname{AR}(1)$ cuts down to zero after lag 1.

- Examples. Simulation of an $\operatorname{AR}(1)$ process with coefficient $\alpha=0.9$ and $\alpha=-0.5$. 1000 observations in each case. In the second case $\sigma^{2}=9$.

```
alpha=. }
xt=arima.sim(1000,model=list(ar=alpha))
par(mfrow=c (3,1),oma=c (2,2,2,2))
ts.plot(ts(xt))
acf(xt,lag=20)
acf(xt,type="partial",lag=20)
mtext("AR(1) process with alpha =.9,
sigma^2=1",outer=T, cex=1.1)
```


Series xt

Series xt


```
# Now with a variance different to one
epsilon=rnorm(500,mean=0,sd=sqrt(3))
alpha=-.5
xt=arima.sim(500,model=list(ar=alpha),innov=epsilon)
par(mfrow=c (3,1),oma=c(2,2,2,2))
ts.plot(ts(xt))
acf(xt,lag=50)
acf(xt,type="partial",lag=50)
mtext("AR(1) process with alpha=-.5,
sigma^2=3",outer=T, cex=1.1)
```


Series xt

- Example. The AR(2) model

$$
X_{t}=\phi_{1} X_{t-1}+\phi_{2} X_{t-2}+\omega_{t}
$$

- First we need to find the autocorrelation function of the process. That will allow us to find the PACF.
- By multiplying the $\operatorname{AR}(2)$ equation by X_{t-k} (both sides) and taking the expected value, we get

$$
\gamma_{k}=\phi_{1} \gamma_{k-1}+\phi_{2} \gamma_{k-2}, k=1,2, \ldots
$$

- Dividing by γ_{0} gives,

$$
\rho_{k}=\phi_{1} \rho_{k-1}+\phi_{2} \rho_{k-2}, k=1,2, \ldots
$$

which defines a linear difference equation for ρ_{k}.

- These difference equations can be difficult to solve.
- For this type of equations, it is recommended (Diggle) to explore a solution of the form $\rho_{k}=\lambda^{k}$ and try to determine the value of λ.
- If we substitute λ^{k} in the difference equation, we get

$$
\lambda^{k}=\phi_{1} \lambda^{k-1}+\phi_{2} \lambda^{k-2}
$$

- Which gives the equation

$$
\lambda^{2}-\phi_{1} \lambda-\phi_{2}=0
$$

- The solution to this equation is

$$
\lambda=\frac{\phi_{1} \pm \sqrt{\phi_{1}^{2}+4 \phi_{2}}}{2}
$$

- This expression gives α_{1} and α_{2}, the reciprocal roots of
the characteristic polynomial.
- Since α_{1} and α_{2} are solutions of the equation, then a linear combination is also a solution.
- Then, the general solution to the difference equation takes the form,

$$
\rho_{k}=a \alpha_{1}^{k}+b \alpha_{2}^{k}, k=0,1,2, \ldots
$$

where a and b are constants to be determined.

- Given this form, the $\rho_{k}^{\prime} s$ will have an exponential behavior.
- To find values for a and b, note that for $k=0,1$, the difference equations are:

$$
\rho_{0}=1=a+b
$$

$$
\rho_{1}=\phi_{1} /\left(1-\phi_{2}\right)=a \alpha_{1}+b \alpha_{2}
$$

- Assuming the $\mathrm{AR}(2)$ satisfies the stationarity conditions, we can find the values of ρ_{k} recursively.
- For the PACF, following Cramer's rule (HW exercise) it can be shown that the first two partial correlations are:

$$
\begin{aligned}
P_{1} & =\frac{\phi_{1}}{1-\phi_{2}} \\
P_{2} & =\phi_{2}
\end{aligned}
$$

and the remaining P_{k} 's are zero.

- Consider an $\mathrm{AR}(2)$ with complex reciprocal roots $\alpha_{1,2}=\operatorname{rexp}(\pm \omega i)$
- The characteristic polynomial is

$$
\Phi(B)=\left(1-r e^{-i \omega} B\right)\left(1-r e^{i \omega} B\right)=\left(1-2 r \cos (\omega) B+r^{2} B^{2}\right)
$$

- The AR coefficients are given by $\phi_{1}=2 r \cos (\omega), \phi_{2}=-r^{2}$
- Lets look at 500 simulated observations of an $\operatorname{AR}(2)$ process with $r=0.95(r=0.75)$ and $\omega=2 \pi / 15$. Here is the R code to obtain this.

```
r=0.95
w=2*pi/15
phi1=2*r*\operatorname{cos(w)}
phi2=-r^2
xt=arima.sim(500,model=list(ar=c(phi1,phi2)))
par(mfrow=c(3,1),oma=c (2, 2, 2, 2))
ts.plot(as.ts(xt))
acf(xt,lag=50)
acf(xt,lag=50,type="partial")
```


Series xt

Series xt

Lag

Series xt

Series xt

- For the case of an $\operatorname{AR}(2)$ with two real roots r_{1} and r_{2}, the characteristic polynomial is

$$
\Phi(B)=\left(1-r_{1} B\right)\left(1-r_{2} B\right)=\left(1-\left(r_{1}+r_{2}\right) B+r_{1} r_{2} B^{2}\right)
$$

- The $\operatorname{AR}(2)$ coefficients are $\phi_{1}=r_{1}+r_{2}$ and $\phi_{2}=-r_{1} r_{2}$
- Lets look at a simulated process with $r_{1}=0.9$ and $r_{2}=0.5$.
- Then we will consider the case $r_{1}=-0.9$ and $r_{2}=-.0 .5$

```
r1=0.9
r2=0.5
phi1=r1+r2
phi2=-r1*r2
xt=arima.sim(500,model=list(ar=c(phi1,phi2)))
```

$\mathrm{AR}(2)$ process with $\mathrm{Phi} 1=1.4$ and $\mathrm{Ph} 2=-0.45$

Series xt

Series xt

Lag

Series xt

Lag

