MATH 316 - REVIEW for Exam 3

Topic: Laplace Transform

Some sample problems are given to supplement hw problems

- Compute Laplace Transform using the definition.
§6.1. 11th ed: $3,6,8,10$ th ed $3,7,11$
Using the definition, find $\mathcal{L}[t]$. Using this result, find $\mathcal{L}\left[t^{2}\right]$.
Using the definition, find $\mathcal{L}\left[y^{\prime}\right]$ (entry 14 in table). Using this result find $\mathcal{L}\left[y^{\prime \prime}\right]$ (entry 15 in table).
- Compute Laplace Transform and inverse Transform using the table. In the exam, you will be given the table posted on the course website.
§6.2. 11th ed: $1,2,3,6$ 10th ed: $1,2,3,8$
$\S 6.3$. 11 th ed: $5,9,10,13,14,15,16$ 10th ed: $7,13,15,19,20,21,24$
Find $\mathcal{L}^{-1}[F]$ where (a) $F(s)=\frac{1+s e^{-2 s}}{s^{2}-4 s+13}$, (b) $F(s)=\frac{3 s-2}{s^{2}+2 s+5}$
- Solve ODEs using the Laplace Transforms, including step functions, delta functions, convolutions. Use alternative methods if applicable.
§6.2. 11th ed: $9,11,16$ 10th ed: $12,15,22$
$\S 6.4$. 11 th ed: $2,4,710$ th ed: $2,5,11$ (can you sketch forcing function and solution in each case?)
Solve the following problem using two alternative methods:

$$
y "+y=g(t), y(0)=0, y^{\prime}(0)=1, g(t)=\left\{\begin{array}{c}
t / 2, \quad 0 \leq t<6 \\
3, \quad t \geq 6
\end{array}\right.
$$

$\S 6.5$. 11 th ed: 1,610 th ed: 1,8
Solve the following IVP: $y^{\prime \prime}+\omega_{o}^{2} y=\epsilon \cos \omega t, \quad y(0)=y_{0}, \quad y^{\prime}(0)=y_{0}^{\prime} \quad$ where $\omega \neq \omega_{o}$ and $\epsilon>0$.

- Graph step functions, compute convolution using definition, understand convergence issues of improper integrals.
§6.3. 11th ed: $1,3,4$ 10th ed: $1,4,6$,
$\S 6.6$. 10 th ed: $4,8,13,15$. 11 th ed: $4,7,11,12$
can you give a 1 -line argument to answer $\S 6.1$. 11 th ed: $19-21$, 10 th ed: $25-28$?

