Lecture 32: The Residue Theorem.

1. Finding residues

Example 1: Find the residue of $f(z)=\frac{e^{-z}}{(z-1)^{2}}$ at $z=1$, the hard way. The easy way. Classify the singularity.

Example 2: Let $f(z)=\frac{1}{(z-1)(z-2)}$. Find residues at $z=1, z=2$. Classify the singularity.

Example 3: Let $f(z)=\frac{\sin z}{z}$. Find residues at $z=0$. Classify the singularity.

2. The Residue Theorem

Let C be a simple closed curve. Suppose $f(z)$ is analytic inside C, except for isolated singularities at $z_{k}, k=1, \ldots, n$. Let B_{k} be the residue at z_{k}. Then

$$
\oint_{C} f(z) d z=2 \pi i \sum_{k=0}^{n} B_{k}
$$

Example 4: Show that under conditions of theorem, $\oint_{C} f(z) d z=\oint_{C_{1}} f(z) d z+\oint_{C_{2}} f(z) d z+\ldots+$ $\oint_{C_{n}} f(z) d z$ where each C_{k} encloses only one singularity at z_{k}. We showed it for $n=2$.
Example 5: Find $\oint_{|z-1|=2} \frac{1}{(z-1)(z-2)} d z$.
Example 6: Find $\oint_{|z-1|=2} \frac{\sin z}{z} d z$.
Example 7: Classify the singularity $z=0$ of $f(z)=\frac{1}{z\left(1+z^{2}\right)}$. Hint: need to use the Laurent series about $z=0$ that is valid in $0<|z|<1$, not the one that holds for $1<|z|<\infty$. Result: the singularity is a pole singularity of order 1 .

3. Special Cases

If $f(z)=\frac{\phi(z)}{z-z_{0}}$ where ϕ is analytic at z_{0}, and C is a curve enclosing only the singularity at z_{0}, then

$$
\oint_{C} f(z) d z=\oint_{C} \frac{\phi(z)}{z-z_{0}} d z=2 \pi i \phi\left(z_{0}\right)
$$

so the residue of f at z_{0} is $b_{1}=\phi\left(z_{0}\right)$.
If $f(z)=\frac{\phi(z)}{\left(z-z_{0}\right)^{n+1}}$ where ϕ is analytic at z_{0}, and C is a curve enclosing only the singularity at z_{0}, then

$$
\oint_{C} f(z) d z=\oint_{C} \frac{\phi(z)}{\left(z-z_{0}\right)^{n+1}} d z=\frac{2 \pi i}{n!} \phi^{(n)}\left(z_{0}\right)
$$

so the residue of f at z_{0} is $b_{1}=\phi^{(n)}\left(z_{0}\right) / n!$.
Example 8: Use the above to find $\oint_{|z|=2} \frac{1}{z\left(1+z^{2}\right)} d z$.

