Lecture 31: Dividing series. Zeros. Singular points.

1. Finding Laurent series by division

Trick: Use the series for $\frac{1}{1-z}$.
Example 1: Consider $f(z)=\frac{1}{z^{2} \sinh (z)}$. Find singular points. Find Laurent series in $0<|z|<\pi$.

2. Zeros of analytic functions

Suppose $f(z)$ is analytic and has a zero at $z_{0}, f\left(z_{0}\right)=0$. Then

$$
f(z)=\sum_{k=0}^{\infty} a_{k}\left(z-z_{0}\right)^{k}
$$

where $a_{0}=0$. If f is not identically equal to zero, then there is at least one $a_{k} \neq 0$. Let m be the smallest index so that $a_{m} \neq 0$. Then

$$
f(z)=\sum_{k=m}^{\infty} a_{k}\left(z-z_{0}\right)^{k}=\left(z-z_{0}\right)^{m}\left[a_{m}+a_{m+1}\left(z-z_{0}\right)+a_{m+2}\left(z-z_{0}\right)^{2}+\ldots\right]=\left(z-z_{0}\right)^{m} g(z)
$$

where $g\left(z_{0}\right) \neq 0$ and g is analytic and therefore continuous at z_{0}. Then there is a neighbourhood of z_{0} within which $g(z) \neq 0$. Also, $\left(z-z_{0}\right)^{m} \neq 0$ if $z \neq 0$. We have thus shown that $f(z) \neq 0$ in a neighbourhood of z_{0}, with $z \neq z_{0}$, that is,

the zeros of an analytic function are isolated points!

3. Singular points

Definition: A point z_{0} is a singular point of f if f is not analytic at z_{0} but is analytic at some point in every neighbourhood of z_{0}

Definition: A point z_{0} is an isolated singular point of f if it is a singular point of f but f is analytic at every point in some neighbourhood of z_{0}.

Example 2: State singular points of $\sinh z$. Are they isolated or not?
Example 3: $z=0$ is a singular point of $\log z$. Is it isolated or not?
Example 4: If $f(z)$ is analytic, the singular points of $1 / f(z)$ are isolated, in view of above.
Note: If f has an isolated singularity at z_{0} then it is analytic in an annular region $D: 0<\left|z-z_{0}\right|<$ R_{1} for some R_{1}, and, in this region D, it has a Laurent series representation

$$
f(z)=\sum_{k=0}^{\infty} a_{k}\left(z-z_{0}\right)^{k}+\frac{b_{1}}{z-z_{0}}+\frac{b_{2}}{\left(z-z_{0}\right)^{2}}+\frac{b_{3}}{\left(z-z_{0}\right)^{3}}+\ldots
$$

Definition: We defined the residue of \mathbf{f} at z_{0}, the principal part of f, as well as essential singularities and pole singularities

