Lectures 28-29: Laurent Series

Now suppose f(z) is analytic only inside an annulus around the origin, D : € < |z| < R. That is, it
is not analytic inside C¢ : |z| = €. Let z € D with |z| = 7. Let C : |z] = Ry where e <7 < Ry < R.
Since f is analytic between C, and C, we can show, using the Cauchy Integral Formula, that
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Using the formula (1) you proved in the homework
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As we showed last time, |p};| — 0 as N — oo (because |2/s| < 1 on C). Also |p%| — 0 as N — oo
(because |s/z] < 1 on C¢). It therefore follows that the series converges and
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This proves that every function that is analytic in an annulus has a Laurent series that consists of
sums of positive and negative powers of z. The result is easily generalized to:
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Theorem: If f is analytic inside an annulus centered at zp , € < |z — 29| < R, where € > 0, then
it has a Laurent series representation
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Note, in particular, that
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