
Lectures 28-29: Laurent Series

Now suppose f(z) is analytic only inside an annulus around the origin, D : ǫ ≤ |z| < R. That is, it
is not analytic inside Cǫ : |z| = ǫ. Let z ∈ D with |z| = r. Let C : |z| = R1 where ǫ < r < R1 < R.
Since f is analytic between Cǫ and C, we can show, using the Cauchy Integral Formula, that

f(z) =
1

2πi

∮
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Using the formula (1) you proved in the homework
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it now follows that
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where
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∮
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As we showed last time, |ρ1
N
| → 0 as N → ∞ (because |z/s| < 1 on C). Also |ρ2

N
| → 0 as N → ∞

(because |s/z| < 1 on Cǫ). It therefore follows that the series converges and
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∮
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This proves that every function that is analytic in an annulus has a Laurent series that consists of
sums of positive and negative powers of z. The result is easily generalized to:
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Theorem: If f is analytic inside an annulus centered at z0 , ǫ < |z − z0| < R, where ǫ > 0, then
it has a Laurent series representation

f(z) =
∞
∑

n=0

an(z − z0)
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∞
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where
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∮
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∮
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Note, in particular, that
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∮
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f(s) ds .
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