Lectures 28-29: Laurent Series

Now suppose $f(z)$ is analytic only inside an annulus around the origin, $D: \epsilon \leq|z|<R$. That is, it is not analytic inside $C_{\epsilon}:|z|=\epsilon$. Let $z \in D$ with $|z|=r$. Let $C:|z|=R_{1}$ where $\epsilon<r<R_{1}<R$. Since f is analytic between C_{ϵ} and C, we can show, using the Cauchy Integral Formula, that

$$
f(z)=\frac{1}{2 \pi i} \oint_{C} \frac{f(s)}{s-z} d s-\frac{1}{2 \pi i} \oint_{C_{\epsilon}} \frac{f(s)}{s-z} d s
$$

Using the formula (1) you proved in the homework

$$
\frac{1}{1-z}=1+z+z^{2}+z^{3}+\ldots+z^{N}+\frac{z^{N+1}}{1-z}
$$

it now follows that

$$
\begin{aligned}
f(z)= & \frac{1}{2 \pi i} \oint_{C} \frac{f(s)}{s} \frac{1}{1-(z / s)} d s+\frac{1}{2 \pi i} \oint_{C_{\epsilon}} \frac{f(s)}{z} \frac{1}{1-(s / z)} d s \\
= & \frac{1}{2 \pi i} \oint_{C} \frac{f(s)}{s}\left(1+\frac{z}{s}+\frac{z^{2}}{s^{2}}+\frac{z^{3}}{s^{3}}+\ldots \frac{z^{N}}{s^{N}}\right) d s+\rho_{N}^{1}(z) \\
& +\frac{1}{2 \pi i} \oint_{C_{\epsilon}} \frac{f(s)}{z}\left(1+\frac{s}{z}+\frac{s^{2}}{z^{2}}+\frac{s^{3}}{z^{3}}+\ldots \frac{s^{N}}{z^{N}}\right) d s+\rho_{N}^{2}(z)
\end{aligned}
$$

where

$$
\rho_{N}^{1}(z)=\frac{1}{2 \pi i} \oint_{C} \frac{f(s)}{s} \frac{(z / s)^{N+1}}{1-(z / s)}, \quad \rho_{N}^{2}(z)=\frac{1}{2 \pi i} \oint_{C_{\epsilon}} \frac{f(s)}{z} \frac{(s / z)^{N+1}}{1-(s / z)}
$$

As we showed last time, $\left|\rho_{N}^{1}\right| \rightarrow 0$ as $N \rightarrow \infty$ (because $|z / s|<1$ on C). Also $\left|\rho_{N}^{2}\right| \rightarrow 0$ as $N \rightarrow \infty$ (because $|s / z|<1$ on C_{ϵ}). It therefore follows that the series converges and

$$
\begin{aligned}
f(z)= & \frac{1}{2 \pi i} \oint_{C} \frac{f(s)}{s} d s+\frac{z}{2 \pi i} \oint_{C} \frac{f(s)}{s^{2}} d s+\frac{z^{2}}{2 \pi i} \oint_{C} \frac{f(s)}{s^{3}} d s+\ldots \\
& +\frac{1}{2 \pi i z} \oint_{C_{\epsilon}} f(s) d s+\frac{1}{2 \pi i z^{2}} \oint_{C_{\epsilon}} f(s) s d s+\frac{1}{2 \pi i z^{3}} \oint_{C_{\epsilon}} f(s) s^{2} d s+\ldots \\
= & \sum_{n=0}^{\infty} a_{n} z^{n}+\sum_{n=1}^{\infty} \frac{b_{n}}{z^{n}} \\
= & a_{0}+a_{1} z+a_{2} z^{2}+a_{3} z^{3}+\ldots+\frac{b_{-1}}{z}+\frac{b_{-2}}{z^{2}}+\frac{b_{-3}}{z^{3}}+\ldots
\end{aligned}
$$

where

$$
a_{n}=\frac{1}{2 \pi i} \int_{C} \frac{f(s)}{s^{n+1}} d s, \quad b_{n}=\frac{1}{2 \pi i} \int_{C_{\epsilon}} f(s) s^{n-1} d s
$$

This proves that every function that is analytic in an annulus has a Laurent series that consists of sums of positive and negative powers of z. The result is easily generalized to:

Theorem: If f is analytic inside an annulus centered at $z_{0}, \epsilon<\left|z-z_{0}\right|<R$, where $\epsilon>0$, then it has a Laurent series representation

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}+\sum_{n=1}^{\infty} \frac{b_{n}}{\left(z-z_{0}\right)^{n}}
$$

where

$$
a_{n}=\frac{1}{2 \pi i} \oint_{C} \frac{f(s)}{\left(s-z_{0}\right)^{n+1}} d s, \quad b_{n}=\frac{1}{2 \pi i} \oint_{C_{\epsilon}} f(s)\left(s-z_{0}\right)^{n-1} d s
$$

Note, in particular, that

$$
b_{1}=\frac{1}{2 \pi i} \oint_{C_{\epsilon}} f(s) d s
$$

