Lectures 24-25: Sequences, Series, Taylor series

1. Sequences

Definition: A sequence of complex numbers {z,}22 ; converges to z if for all € > 0 there exists
an integer N > 0 such that

n>N=|z,—z2|/<e€.
In that case we write

lim 2z, =% or 2z, —zasn— o
n—oo

Ezample 1: lim |2|" = 0 for all z with |z| < 1.
n— oo

2. Series

Definition: A series Y > | z, converges to S if the partial sums

N
SN = E Zn — S asn— oo .

n=1

Theorem: For a series to converge the summands z, must approach 0 as n — oo sufficiently fast.
That is, lim,,_,~ 2, = 0 is necessary for convergence, but not sufficient.

Ezample 2: The harmonic series Y -, % diverges by the Integral Test, even though 1/n — 0 as
n — 0.

o0
Example 3: Consider the geometric series Z 2" = 0. In the homework you showed that if z # 1,
n=0
the partial sums equal

N 1—ZN+1
sy=14+z+224+22+... +2 =7 (1)

It now follows that if |z| < 1, then

o0 N 1
HZ:%Z :1—2

It is also easy to check that if |z| > 1 then

oo

E z"diverges
n=0

since the nth term in the series does not — 0 as n — oco.
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3. Taylor series

Suppose f(z) is analytic inside a circle of radius R centered on the origin, D : |z| < R. Let z € D
with |z| = r. Let C : |z| = Ry where r < Ry < R. By the Cauchy Integral Formula, since z is
inside C, C'is closed and simple, and f analytic,

f) 4

2ri Cs—z

flz) =

Using the formula (1) you proved in the homework

1 SN+1
——=14z+22+ 2+ 42N+
I—=z 1-2
it follows that
_ fs) 1
f(z) = 2mi b s 1—(z/s)d$
f(S) 22 23 2N
T omi ( + +7+7+ SN>d3+PN(Z)
f(s f(s) f(s) £(s)
d 2377 ds EASYp N d
= omi f To Qm o s2 + 5 27” g +. + omi f 581 s+ pn(2)
"0 a0 (N) 0
:f(0)+f'(0)z+f()22+f ()23+...+f7)()zN+pN(z)
2 3! N!
where var .
o QG0 R N R 0 P aaia
2t Jo s 1—2z/s 27 Jo (s — z)sN+1

Since s € C it follows that |s| = Ry. Also |z| =r < R;. Also
|s —z| > ||s| = |z|]| = Ry —r (as you showed in HW)

and f is bounded on C, since it is analytic (and therefore continous). That is, |f| < M on C for
some M. So

— By

SN+ M r o\ N+1
[£Gs) (s — z)sN+1 < (Ry —1) (E)
and thus )
‘pN} < %QWRIBN = R By

Since By — 0 as N — oo (since r/R; < 1), it follows that the upper bound R1 By — 0 and thus
oy > 0as N — o0

This proves that the infinite Taylor series converges. We have thus used the Cauchy Integral formula
to prove, in a quite simple and direct way, a rather amazing result:

Theorem: If f is analytic inside a circle centered at the origin, |z| < R, then the Taylor series

Ef(n)() :f()+f() f//(o)z2_|_f”,(0)z3_|_

| | |
= 2! 3!

converges to f(z), that is, it is = f(z) for all z € D!l
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The result can be easily gereneralized to a circle centered at zg:

Theorem: If f is analytic inside the circle D : |z — z9| < R, then the Taylor series about zg
converges to f,

0 n)(,
fe) =Y L oy
n=0 '

for all z € D.

Ezxample J: f(z) = e*. Write down Taylor series. State region of convergence.
Ezample 5: f(z) = sin z. Write down Taylor series. State region of convergence.

Ezample 6: f(z) = cosz. Write down Taylor series. State region of convergence.

o
Theorem: Uniqueness of Taylor series. If f(z) = Z an(z — z0)", then a, = L(,ZO) and the
n=0

)
n:
series is the Taylor series about zj.

Theorem: Region of convergence. If a Taylor series converges at a point z; then it converges
at all points z with |z — zo| < |21 — 20].

Draw a picture. This implies that the region of convergence of a Taylor series about zg is a disk
centered at zg, plus possibly some points on the boundary. This in turn implies that the region of
convergence is a circle about 2y that reaches up to the nearest singularity!

1
Ezxample 7: f(z) = T Write down Taylor series about z = 0. State region of convergence.

Ezxample 8: f(z) = ﬁ Write down Taylor series about z = 0. State region of convergence.

1
Ezample 9: f(z) = —. Write down Taylor series about z = 1. State region of convergence. About
z
z=2.

1+ 22

Ezxzample 10: f(z) = oy Expand into series involving powers of z. State region of convergence.
2?2+ z

z

e
Ezample 11: f(z) = — - Expand into series involving powers of z. State region of convergence.
z

One further interesting property of analytic functions follows from the Taylor series representation
that they all have. Suppose f is analytic at zp and f(z9) = 0. Then its Taylor series about zg
converges in a disk around zg. This Taylor series either is identically zero, or there is one first
nonzero term, so that

f(Z) = am(z — zo)m + am+1(z _ Zo)m—i-l + am—i—l(z _ Zo)m+2 +o

=(z—20)" [am + Amg1(z — 20) + Gmyo(z — 20)% + .. ]
= (2 —20)"9(2)

where ¢ is some analytic function around zy with g(z¢) = a,,, # 0. Since g is continous at zp, and
(z — 20)™ # 0 for z # 2z, it follows that f(z) # 0 near zg !! This proves that
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Theorem: Zeros of analytic functions. The zeros of an analytic function are isolated, unless
f is identically zero.

Inside their domain of convergence, Taylor series can be differentiated and integrated term by term.
Two Taylor series can be multiplied term by term within their joint domain of convergence.

z

Ezample 12: f(z) = 1?_

. Find Taylor series about 0.
z

Ezample 13: f(z) = 5- Find Taylor series about 0.

(1+2)

Ezxzample 14: f(z) =log(1 + z). Find Taylor series about 0.



