Lecture 23: Computing integrals. Maximum principle.

1. Evaluating integrals
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2. Maximum principle

Note: Let C : |z — z9| = r and f be analytic in a region containing C. The curve C can be
parametrized by z(t) = zo +re?’ , 0 € [0,27]. Then
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That is, f(zo) is the average of function values around the surrounding curve C'! This implies that
if f > f(z0) somewhere on C, then f must be < f(zp) somewhere on C, and vice versa.

Theorem: (Maximum principle.) If f is analytic in a domain D, then f cannot attain a
maximum value inside D, unless it is the constant function.

Similarly: if f is entire, then f is either unbounded, or identically equal to a constant.

Again, these are very strong properties that differentiable functions of a real variable do not have.
And all follows from the Cauchy-Riemann equations! (how?)



