Lecture 23: Computing integrals. Maximum principle.

1. Evaluating integrals

Example 1: Find $\oint_{|z|=4} \frac{\sin z}{z^{2}} d z$
Example 2: Find $\oint_{|z|=4} \frac{\cos z}{z^{3}\left(z^{2}+8\right)} d z$
Example 3: Show that $\oint_{C} \frac{f(z)}{\left(z-z_{1}\right)\left(z-z_{2}\right)^{2}\left(z-z_{3}\right)^{3}} d z=\oint_{C_{1}}+\oint_{C_{2}}+\oint_{C_{3}}$ where C_{k} enclose only z_{k} and no other singularity
Example 4: Find $\oint_{C} \frac{s^{3}+2 s}{(s-z)^{2}} d s$

2. Maximum principle

Note: Let $C:\left|z-z_{0}\right|=r$ and f be analytic in a region containing C. The curve C can be parametrized by $z(t)=z_{0}+r e^{i \theta}, \quad \theta \in[0,2 \pi]$. Then

$$
f\left(z_{0}\right)=\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{z-z_{0}} d z=\frac{1}{2 \pi i} \int_{0}^{2 \pi} \frac{f(z(\theta))}{r e^{i \theta}} z^{\prime}(\theta) d \theta=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(z_{0}+r e^{i \theta}\right) d \theta=f_{a v}
$$

That is, $f\left(z_{0}\right)$ is the average of function values around the surrounding curve C ! This implies that if $f>f\left(z_{0}\right)$ somewhere on C, then f must be $<f\left(z_{0}\right)$ somewhere on C, and vice versa.

Theorem: (Maximum principle.) If f is analytic in a domain D, then f cannot attain a maximum value inside D, unless it is the constant function.

Similarly: if f is entire, then f is either unbounded, or identically equal to a constant.
Again, these are very strong properties that differentiable functions of a real variable do not have. And all follows from the Cauchy-Riemann equations! (how?)

