Lecture 17: Line Integrals of functions of a complex variable

1. Curves

Curves in the complex plane are parametrized by

$$
z(t)=x(t)+i y(t), \quad t \in[a, b] .
$$

The derivative $z^{\prime}(t)=x^{\prime}(t)+i y^{\prime}(t)$ is a vector tangent to the curve. The unit tangent vector is

$$
\frac{z^{\prime}(t)}{\left|z^{\prime}(t)\right|}
$$

Example 1: Parametrize circle of radius r centered at z_{0}, clockwise orientation
Example 2: Graph of $z(t)=(5-t)+i(2+2 t), t \in[-2,3]$
Definition: A simple curve is a curve that does not intersect itself $\left(z\left(t_{1}\right) \neq z\left(t_{2}\right)\right.$ if $\left.t_{1} \neq t_{2}\right)$.
Definition: A smooth curve is given by differentiable functions $x(t), y(t)$ such that $\left|z^{\prime}(t)\right| \neq 0$.
Definition: A closed curve satisfies $z(a)=z(b)$.

2. Line Integrals I, independent of orientation

Example 1: Arclength $\int_{C} d s=\int_{a}^{b}\left|z^{\prime}(t)\right| d t$

3. Line Integrals II, $\int_{C} f(z) d z$, dependent on orientation

Definition: Let $f(z)=u(x, y)+i v(x, y)$ be function of a complex variable $z=x+i y$, and C be a curve bien by $z(t)=x(t)+i y(t), \quad t \in[a, b]$. Define

$$
\int_{C} f(z) d z=\int_{a}^{b} f(z(t)) z^{\prime}(t) d t
$$

Note 1: $\int_{C} f(z) d z=\int_{C} u d x-v d y+i \int_{C} v d x+u d y$
Note 2: Suppose that $|f(z)| \leq M$ along C. Then

$$
\left|\int_{C} f(z) d z\right| \leq \int_{a}^{b}\left|f(z) z^{\prime}(t)\right| d t \leq M \int_{a}^{b}\left|z^{\prime}(t)\right| d t=M L
$$

Example 1: Find $\int_{C} z^{2} d z$ where C is the line from origin to $2+i$
Example 2: Find $\int_{C} z^{2} d z$ where C is segment of two lines from origin to $2+i$
Example 3: Find $\int_{C} \bar{z} d z$ where C is half-circle from 1 to -1 .
Example 4: Find $\int_{C} \bar{z} d z$ where C is line from 1 to -1 .
Example 5: Find $\int_{C} \frac{1}{z-z_{0}} d z$ where C is closed circle around z_{0}.

