Lecture 15: Line Integrals of real-valued functions

1. Curves

Curves are parametrized by

$$
\mathbf{x}(t)=\langle x(t), y(t)\rangle, t \in[a, b]
$$

The derivative $\mathbf{x}^{\prime}(t)=\left\langle x^{\prime}(t), y^{\prime}(t)\right\rangle$ is a vector tangent to the curve. The unit tangent vector is

$$
\mathbf{T}(t)=\frac{\mathbf{x}^{\prime}(t)}{\left|\mathbf{x}^{\prime}(t)\right|}
$$

Example 1: Parametrize 3/4 circle, clockwise orientation
Example 2: Parametrize line
Example 3: Parametrize section of parabola
Example 4: Graph of $x=t^{3}, y=t^{2}$. What happens at $t=0$? Why there is no tangent vector at that point.

2. Line Integrals I, $\int_{C} f(x, y) d s$

Definition: $\int_{C} f(x, y) d s=\lim _{n \rightarrow \infty} \sum_{j=1}^{n} f\left(x_{k}, y_{k}\right) \Delta s$
Example 1: Arclength $\int_{C} d s$
This type of integral does not depend on the orientation of the curve C.
To compute them use that $\Delta s \approx \sqrt{\Delta x^{2}+\Delta y^{2}}=\sqrt{\left(\frac{\Delta x}{\Delta t}\right)^{2}+\left(\frac{\Delta y}{\Delta t}\right)^{2}} \Delta t$ to get the formula

$$
d s=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

Then write

$$
\int_{C} f(x, y) d s=\int_{a}^{b} f(x(t), y(t)) \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t=\int_{a}^{b} f(x(t), y(t))\left|\mathbf{x}^{\prime}(t)\right| d t
$$

3. Line Integrals II, $\int_{C} \mathbf{F}(x, y) \cdot \mathbf{T} d s=\int_{C} \mathbf{F}(x, y) \cdot d \mathbf{s}$

Let $\mathbf{F}(x, y)=\langle P(x, y), Q(x, y)\rangle$ be a vector field, $C:\langle x(t), y(t)\rangle t \in[a, b]$ be a given curve and $\mathbf{T}(t)$ be the unit tangent vector at t. The oriented line integral

$$
\int_{C} \mathbf{F} \cdot \mathbf{T} d s
$$

integrates the component of F tangent to the curve C. To compute it use

$$
\int_{C} \mathbf{F} \cdot \mathbf{T} d s=\int_{a}^{b}(P, Q) \cdot \frac{\mathbf{x}^{\prime}(t)}{\left|\mathbf{x}^{\prime}(t)\right|}\left|\mathbf{x}^{\prime}(t)\right| d t=\int_{a}^{b}(P, Q) \cdot \mathbf{x}^{\prime}(t) d t=\int_{a}^{b}\left(P \frac{d x}{d t}+Q \frac{d y}{d t}\right) d t
$$

which is often also written as

$$
=\int_{C} P d x+Q d y
$$

Theorem: If $\mathbf{F}=\nabla f$ then the line integral is path independent, with

$$
\int_{C} \nabla f \cdot \mathbf{T} d s=f(B)-f(A)
$$

where $A=\mathbf{x}(a)$ and $B=\mathbf{x}(b)$

Theorem: If C is closed, then

$$
\int_{C} P d x+Q d y=\iint_{A} \frac{d Q}{d x}-\frac{d P}{d y} d A
$$

