$$
\text { Lecture 15: Integrals } \int_{a}^{b} f(t) d t \text {, where } f(t)=u(t)+i v(t)
$$

1. Review of multi-variable calculus

How to represent curves C in the plane?
How to compute arclength? Derive $d s=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t$
2. Integrals $\int_{a}^{b} f(t) d t, f(t)=u(t)+i v(t)$

Let $f(t)=u(t)+i v(t), t \in[a, b], u, v$ piecewise continuous, with finite left and right-hand limits. This corresponds to sampling the function $f(z)=u(x, y)+i v(x, y)$ on the real line where $z=t$. Define

$$
\int_{a}^{b} f(t) d t=\int_{a}^{b} u(t) d t+i \int_{a}^{b} v(t) d t
$$

Note: Supposed U and V are antiderivatives of u, v, so that $W=U+i V$ is antiderivative of $w=f(t)$. Then

$$
\int_{a}^{b} f(t) d t=\int_{a}^{b} u(t) d t+i \int_{a}^{b} v(t) d t=U+\left.i V\right|_{a} ^{b}=\left.W\right|_{a} ^{b}
$$

Example 1: Evaluate $\int_{0}^{\pi / 4} e^{i t} d t$ in two ways: (1) integrate real and imaginary parts separately; (2) find antiderivative W directly.

Example 2: Evaluate $\int_{0}^{2 \pi} \sin (3 x) \cos (5 x) d x$. What methods can you think of? (we have seen two methods so far for this one) Now use complex variables.

3. Inequalities of integrals.

Example 1: Assume $f(x)$ is real-valued. We showed $\left|\int_{a}^{b} f(x) d x\right| \leq \int_{a}^{b}|f(x)| d x \quad$ (also HW).
Theorem: Let $f(z)=u(t)+i v(t), t \in[a, b]$. Then

$$
\left|\int_{a}^{b} f(t) d t\right| \leq \int_{a}^{b}|f(t)| d t
$$

Proof: next class

