Lecture 12: Exponents. Logs. Harmonic functions.

1. Exponential and logarithmic function

Let $f(z)=e^{z}$. Is f differentiable? Use C-R. What is $f^{\prime}(z)$? Note: f is entire.

Let $f(z)=\log (z)$. Is f differentiable? Use C-R in Cartesian coordinates. What is $f^{\prime}(z)$? Repeat using C-R in polar coordinates. Where is f differentiable?

2. Harmonic functions

Definition: A function $g(x, y)$ is harmonic if it satisfies Laplace's equation:

$$
g_{x x}+g_{y y}=0
$$

Note: if $f(z)=u(x, y)+i v(x, y)$ is analytic, then both u and v are harmonic (show it).

Definition: If $f(z)=u+i v$ is analytic, then v is the harmonic conjugate of u.
Note: If v is the harmonic conjugate of $u(f(z)=u(x, y)+i v(x, y)$ is analytic $)$, then u is NOT the harmonic conjugate of v, unless both u, v are identically constant (show it).

Example 1: Let $u(x, y)=y^{3}-3 x^{2} y$. Is u harmonic? (Check if $u_{x x}+u_{y y}=0$. Answer: YES) Find the harmonic conjugate v. (Set up C-R equations for v_{x} and v_{y}. Find $v(x, y)$ for the given ∇v.)

