Lectures 10-11: Cauchy-Riemann Equations. Analytic functions.

1. Cauchy (1789-1857) - Riemann (1829-1866) Equations

Theorem: Suppose $f(z)=u(x, y)+i v(x, y)$ is differentiable at $z=z_{0}$. Then u, v must satisfy the Cauchy-Riemann equations:

$$
u_{x}=v_{y}, \quad u_{y}=-v_{x}
$$

Furthermore, $f^{\prime}(z)=u_{x}+i v_{x}=v_{y}-i u_{y}$.
Proof: in class
Example 1: $f(z)=z^{2}$ is differentiable and indeed, C-R are satisfied. Note $f^{\prime}(z)$ computed earlier using definition satisfies formula.
Example 2: $f(z)=\bar{z}$ does not satisfy C-R. Thus it is not differentiable.
From the above theorem it does not follow that if C-R are satisfied, the function is differentiable. For that we need a stronger theorem.

Theorem: Suppose $u_{x}, u_{y}, v_{x}, v_{y}$ exist in a neighbourhood of z_{0}, and are continuous at z_{0}, then

$$
f(z) \text { is differentiable at } z_{0} \Longleftrightarrow \text { Cauchy-Riemann are satisfied }
$$

Proof: in class, using Taylor series. We reviewed Taylor series for functions of 1 and 2 variables.
From this second theorem it follows that if u, v are sufficiently nice, it is enough to check whether the Cauchy-Riemann equations are satisfied to determine whether f is differentiable.

2. Cauchy-Riemann Equations in polar coordinates

Theorem: Let $f(z)=u(r, \theta)+i v(r, \theta)$ where $z=x+i y$ and $x=r \cos \theta, y=r \sin \theta$. If $u_{x}, u_{y}, v_{x}, v_{y}$ exist in a neighbourhood of a nonzero point $z_{0} \neq 0$, and are continuous at z_{0}, then

$$
f(z) \text { is differentiable at } z_{0} \Longleftrightarrow u_{r}=\frac{1}{r} v_{\theta}, \quad \frac{1}{r} u_{\theta}=-v_{r}
$$

In that case, $f^{\prime}(z)=e^{-i \theta}\left(u_{r}+i v_{r}\right)$.
Proof: We outlined the equivalence of Cauchy-Riemann in Cartesian and polar coordinates in class. Full details are in HW.

Example 3: Show $f(z)=|z|^{2}=r^{2}$ is not differentiable.

3. Analytic functions

Definition: $f(z)$ is analytic at z_{0} if it is differentiable in a nbhd of z_{0}
Definition: $f(z)$ is analytic (or holomorphic) in R if it is differentiable at all $z \in R$
Definition: $f(z)$ is entire if it is differentiable in \mathbb{C}
Definition: z_{0} is a singular point of $f(z)$ if f is analytic at some point in every nbhd of z_{0}
Theorem: Sums, products, quotients of analytic functions are analytic, as long as denominator not zero.

