Lecture 9: Continuity and differentiability

1. Continuity

Definition: $f(z)$ is continuous at $z=z_{0}$ if
(i) $\lim _{z \rightarrow z_{0}} f(z)$ exists
(ii) $f\left(z_{0}\right)$ exists
(iii) $\lim _{z \rightarrow z_{0}} f(z)=f\left(z_{0}\right)$

The following statement is equivalent: for any $\epsilon>0$ there exists a $\delta>0$ such that

$$
\left|z-z_{0}\right|<\delta \Rightarrow\left|f(z)-f\left(z_{0}\right)\right|<\epsilon
$$

How does this statement differ from the one giving existence of a limit?
Theorem: $f(z)=u(x, y)+i v(x, y)$ is continuous at $z_{0}=x_{0}+i y_{0} \Longleftrightarrow u$ and v are continuous at $\left(x_{0}, y_{0}\right)$

It follows that sums, products and compositions of continous functions are continuous.

2. Differentiability

Definition: $f(z)$ is differentiable at $z=z_{0}$ if the limit

$$
\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}=\lim _{\Delta z \rightarrow 0} \frac{f(z 0+\Delta z)-f\left(z_{0}\right)}{\Delta z}
$$

exists. In that case, the limit is denoted by $f^{\prime}\left(z_{0}\right)$.

Example 1: Use the definition to find the derivative of $f(z)=z^{2}$.

Example 2: Use the definition to show that $f(z)=|z|^{2}$ is not differentiable anywhere except at $z=0$.

Example 2 above illustrates that a continuity does not imply differentiability. However:

Theorem: If $f(z)$ is differentiable at z_{0}, then it is continuous there.
Proof: In class. Also HW

Theorem: Suppose that $f(z)$ and $g(z)$ are differentiable at z. Then
(1) $(f+g)^{\prime}(z)=f^{\prime}(z)+g^{\prime}(z)$
(2) $(f g)^{\prime}(z)=f^{\prime}(z) g(z)+f(z) g^{\prime}(z)$
(3) $(f / g)^{\prime}(z)=\frac{f^{\prime}(z) g(z)-f(z) g^{\prime}(z)}{g^{2}(z)}$ provided $g(z) \neq 0$
(4) $(f \circ g)^{\prime}(z)=f^{\prime}(g(z)) g^{\prime}(z)$ provided f differentiable at $g(z)$

Proof: We proved (3) in class.

Example 3: Find $f^{\prime}(z)$ if $f(z)=\left(2 z^{2}+i\right)^{5}$.

