1. Continuity

Definition: f(z) is continuous at $z = z_0$ if

(i)
$$\lim_{z \to z_0} f(z)$$
 exists
(ii) $f(z_0)$ exists
(iii) $\lim_{z \to z_0} f(z) = f(z_0)$

The following statement is equivalent: for any $\epsilon > 0$ there exists a $\delta > 0$ such that

$$|z - z_0| < \delta \Rightarrow |f(z) - f(z_0)| < \epsilon$$

How does this statement differ from the one giving existence of a limit?

Theorem: f(z) = u(x, y) + iv(x, y) is continuous at $z_0 = x_0 + iy_0 \iff u$ and v are continuous at (x_0, y_0)

It follows that sums, products and compositions of continuous functions are continuous.

2. Differentiability

Definition: f(z) is differentiable at $z = z_0$ if the limit

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}$$

exists. In that case, the limit is denoted by $f'(z_0)$.

Example 1: Use the definition to find the derivative of $f(z) = z^2$.

Example 2: Use the definition to show that $f(z) = |z|^2$ is not differentiable anywhere except at z = 0.

Example 2 above illustrates that a continuity does not imply differentiability. However:

Theorem: If f(z) is differentiable at z_0 , then it is continuous there. *Proof:* In class. Also HW Theorem: Suppose that f(z) and g(z) are differentiable at z. Then

(1)
$$(f+g)'(z) = f'(z) + g'(z)$$

(2) $(fg)'(z) = f'(z)g(z) + f(z)g'(z)$
(3) $(f/g)'(z) = \frac{f'(z)g(z) - f(z)g'(z)}{g^2(z)}$ provided $g(z) \neq 0$
(4) $(f \circ g)'(z) = f'(g(z))g'(z)$ provided f differentiable at $g(z)$

Proof: We proved (3) in class.

Example 3: Find f'(z) if $f(z) = (2z^2 + i)^5$.