Lectures 7-8: Limits of Functions of a complex variable

1. Definition of the limit

Review: Let $f(x)$ be a real-valued function of a real variable. What does

$$
\lim _{x \rightarrow c} f(x)=L
$$

mean, where L is a finite number?
Review: Let $f(x, y)$ be a real-valued function of two real variable. What does

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)=L
$$

mean, where L is a finite number?
Example 1: Show that $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}}{x^{2}+y^{2}}$ does not exist.
Example 2: Show that $\lim _{(x, y) \rightarrow(0,0)} \frac{3 x^{2} y}{x^{2}+y^{2}}=0$.

Definition: Let $f(z)=u(x, y)+i v(x, y)$, where $z=x+i y$. Then

$$
\lim _{z \rightarrow z_{0}} f(z)=w_{0}
$$

if for any $\epsilon>0$ there exists a $\delta>0$ such that

$$
\left|z-z_{0}\right|<\delta \Rightarrow\left|f-w_{0}\right|<\epsilon
$$

What does this mean geometrically? Note: δ typically depends on ϵ.
Example 3: Show that $\lim _{z \rightarrow 1} \frac{i z}{2}=\frac{i}{2}$.
Example 4: Show that $\lim _{z \rightarrow 2 i}\left(2 x+i y^{2}\right)=4 i$.
Definition: Let $f(z)=u(x, y)+i v(x, y)$, where $z=x+i y$. Then

$$
\lim _{z \rightarrow z_{0}} f(z)=\infty
$$

if for any $\epsilon>0$ there exists a $\delta>0$ such that

$$
\left|z-z_{0}\right|<\delta \Rightarrow|f|>\frac{1}{\epsilon}
$$

Definition: Let $f(z)=u(x, y)+i v(x, y)$, where $z=x+i y$. Then

$$
\lim _{z \rightarrow \infty} f(z)=w_{0}
$$

if for any $\epsilon>0$ there exists a $\delta>0$ such that

$$
|z|>\frac{1}{\delta} \Rightarrow\left|f-w_{0}\right|<\epsilon
$$

Example 5: Show that $\lim _{z \rightarrow 0} \frac{1}{z^{2}}=\infty$.
Example 6: Show that $\lim _{z \rightarrow \infty} \frac{1}{z^{2}}=0$.

2. Limit rules

Theorem: Suppose $f(z)=u(x, y)+i v(x, y), z=x+i y, z_{0}=x_{0}+i y_{0}$. Then

$$
\lim _{z \rightarrow z_{0}} f(z)=\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} u(x, y)+i \lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} v(x, y)
$$

Theorem: Suppose $\lim _{z \rightarrow z_{0}} f(z)$ and $\lim _{z \rightarrow z_{0}} g(z)$ exist. Then

$$
\begin{gathered}
\lim _{z \rightarrow z_{0}}[f(z)+g(z)]=\left[\lim _{z \rightarrow z_{0}} f(z)\right]+\left[\lim _{z \rightarrow z_{0}} g(z)\right] \\
\lim _{z \rightarrow z_{0}}[f(z) g(z)]=\left[\lim _{z \rightarrow z_{0}} f(z)\right]\left[\lim _{z \rightarrow z_{0}} f(z)\right] \\
\lim _{z \rightarrow z_{0}}\left[\frac{f(z)}{g(z)}\right]=\frac{\lim _{z \rightarrow z_{0}} f(z)}{\lim _{z \rightarrow z_{0}} g(z)} \quad \text { provided } \quad \lim _{z \rightarrow z_{0}} \mathrm{~g}(\mathrm{z}) \neq 0
\end{gathered}
$$

Example 7: If $p(z)$ is a polynomial, it follows that $\lim _{z \rightarrow z_{0}} p(z)=p\left(z_{0}\right)$.

