Lectures 5-6: Functions of a complex variable

A function w = f(z) of a complex variable z = x + iy is of the form

$$f(z) = u(x, y) + iv(x, y)$$

where u and v are real-valued functions, the real and imaginary part of f. It maps a point z in the x-y plane into a point w in the u-w plane, is therefore also called a **mapping** or **transformation**.

- Example 1: $f(z) = z^2$. Find u and v. Find the image in the w-plane of a sample point in the z-plane. Find the image in the w-plane of a wedge in z-plane, for example the wedge $\{z : |z| \leq 2, \arg(z) \in [0, 3\pi/4]$. Find the pre-image in the z-plane of horizontal and vertical lines in the w-plane, u = const, v = const. HW: show that these pre-image curves, namely the *level curves* of u and v, are orthogonal with respect to each other.
- *Example 2:* Any two real-valued u(x, y), v(x, y) define a function of a complex variable f = u + iv, for example $f(z) = y \int_0^\infty e^{-xt} dt + i \sum_{n=0}^\infty y^n$, for x > 0, |y| < 1. Graph the domain of this function.
- Example 3: $p(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_n z^n$. We know how to add and multiply complex numbers, so we can evaluate any polynomial p(z).
- Example 4: f(z) = |z|. This is a real-valued function. Note that for this function the level curves of u and v are not normal to each other.

Example 5: $f(z) = \overline{z}$.

Example 6: $f(z) = e^z = e^{x+iy} = e^x(\cos y + i \sin y)$. This function satisfies the usual rules for exponentials:

$$e^{z_1}e^{z_2} = e^{z_1+z^2}$$
, $e^{z_1}/e^{z_2} = e^{z_1-z_2}$, $(e^z)^n = e^{nz}$.

Example 7:
$$f(z) = \sin z = \frac{e^{iz} - e^{-iz}}{2i}$$
, $f(z) = \cos z = \frac{e^{iz} + e^{-iz}}{2}$

Example 8: $f(z) = \sinh z = \frac{e^z - e^{-z}}{2}$, $f(z) = \cosh z = \frac{e^z + e^{-z}}{2}$

Example 9: f(z) = z + 1/z. This is called a *linear fractional transformation*. We showed that it maps the upper half plane outside the unit circle 1-1 and onto the upper half plane.

Example 10: $f(z) = \log(z) = \log(re^{i\theta+2n\pi}) = \operatorname{Log}(r) + i(\theta + 2n\pi)$. This is our first example of a **multi-valued** function. Here $\operatorname{Log}(r) = \ln(r)$, our usual single valued logarithm of a function of one variable. The multivalued complex log has several **branches**, corresponding to the several arguments of z. We can restrict the domain to make it single-valued. The **principal logarithm** (denoted by $\operatorname{Log}(z)$) is

$$\operatorname{Log}(z) = \operatorname{Log}(r) + i\theta$$
, where $\theta \in (-\pi, \pi]$.

The **branch-cut** corresponding to this branch is the line across which the principal log is discontinuous, in this case $\theta = -\pi$. Note that with this definition Log(z) agrees with $\ln(r)$ when z = r is real, positive.

We could have used any other value of θ as a branch-cut to make the log singlevalued. All these lines must include the origin, which is called a **branch-point**.

Note:

$$e^{\log z} = z$$
 but $\log(e^z) \neq z$

because of the multi-valuedness. $\log(z)$ satisfies the usual log properties (HW)

$$\log(z_1 z_2) = \log(z_1) + \log(z_2) , \quad \log(z_1/z_2) = \log(z_1) - \log(z_2) , \quad \log(z^p) = p \log(z)$$

HW: Find the level curves of u and v for $\log(z) = u + iv$.

Example 11: $f(z) = z^{1/2}$ also multivalued: it has two values, that is, two branches.

Example 12: $f(z) = z^{1/3}$ has three branches.

Example 13: You can compute $f(z) = z^c$ for any complex c using the multi-valued or the principal logarithm using

 $z^{c} = e^{c \log(z)}$, Principal branch: $z^{c} = e^{c \log(z)}$.

Example 14: HW: Using the principal branch of z^i , find its real and imaginary parts $u(r, \theta)$ and $v(r, \theta)$, using polar coordinates,

$$z^i = u(r,\theta) + iv(r,\theta)$$
.