Lectures 5-6: Functions of a complex variable

A function $w=f(z)$ of a complex variable $z=x+i y$ is of the form

$$
f(z)=u(x, y)+i v(x, y)
$$

where u and v are real-valued functions, the real and imaginary part of f. It maps a point z in the $x-y$ plane into a point w in the $u-w$ plane, is therefore also called a mapping or transformation.

Example 1: $f(z)=z^{2}$. Find u and v. Find the image in the w-plane of a sample point in the z-plane. Find the image in the w-plane of a wedge in z-plane, for example the wedge $\{z:|z| \leq 2, \arg (z) \in[0,3 \pi / 4]$. Find the pre-image in the z-plane of horizontal and vertical lines in the w-plane, $u=$ const, $v=$ const. HW: show that these pre-image curves, namely the level curves of u and v, are orthogonal with respect to each other.

Example 2: Any two real-valued $u(x, y), v(x, y)$ define a function of a complex variable $f=u+i v$, for example $f(z)=y \int_{0}^{\infty} e^{-x t} d t+i \sum_{n=0}^{\infty} y^{n}$, for $x>0,|y|<1$. Graph the domain of this function.

Example 3: $p(z)=a_{0}+a_{1} z+a_{2} z^{2}+\ldots a_{n} z^{n}$. We know how to add and multiply complex numbers, so we can evaluate any polynomial $p(z)$.

Example 4: $f(z)=|z|$. This is a real-valued function. Note that for this function the level curves of u and v are not normal to each other.

Example 5: $f(z)=\bar{z}$.
Example 6: $f(z)=e^{z}=e^{x+i y}=e^{x}(\cos y+i \sin y)$. This function satisfies the usual rules for exponentials:

$$
e^{z_{1}} e^{z_{2}}=e^{z_{1}+z^{2}}, \quad e^{z_{1}} / e^{z_{2}}=e^{z_{1}-z_{2}}, \quad\left(e^{z}\right)^{n}=e^{n z}
$$

Example 7: $f(z)=\sin z=\frac{e^{i z}-e^{-i z}}{2 i}, \quad f(z)=\cos z=\frac{e^{i z}+e^{-i z}}{2}$
Example 8: $f(z)=\sinh z=\frac{e^{z}-e^{-z}}{2}, \quad f(z)=\cosh z=\frac{e^{z}+e^{-z}}{2}$
Example 9: $f(z)=z+1 / z$. This is called a linear fractional transformation. We showed that it maps the upper half plane outside the unit circle 1-1 and onto the upper half plane.

Example 10: $f(z)=\log (z)=\log \left(r e^{i \theta+2 n \pi)}\right)=\log (r)+i(\theta+2 n \pi)$. This is our first example of a multi-valued function. Here $\log (r)=\ln (r)$, our usual single valued logarithm of a function of one variable. The multivalued complex log has several branches, corresponding to the several arguments of z. We can restrict the domain to make it single-valued. The principal logarithm (denoted by $\log (z)$) is

$$
\log (z)=\log (r)+i \theta, \quad \text { where } \theta \in(-\pi, \pi] .
$$

The branch-cut corresponding to this branch is the line across which the principal \log is discontinuous, in this case $\theta=-\pi$. Note that with this definition $\log (z)$ agrees with $\ln (r)$ when $z=r$ is real, positive.

We could have used any other value of θ as a branch-cut to make the log singlevalued. All these lines must include the origin, which is called a branch-point.

Note:

$$
e^{\log z}=z \quad \text { but } \quad \log \left(e^{z}\right) \neq z
$$

because of the multi-valuedness. $\log (z)$ satisfies the usual \log properties (HW)
$\log \left(z_{1} z_{2}\right)=\log \left(z_{1}\right)+\log \left(z_{2}\right), \quad \log \left(z_{1} / z_{2}\right)=\log \left(z_{1}\right)-\log \left(z_{2}\right), \quad \log \left(z^{p}\right)=p \log (z)$.
HW: Find the level curves of u and v for $\log (z)=u+i v$.
Example 11: $f(z)=z^{1 / 2}$ also multivalued: it has two values, that is, two branches.
Example 12: $f(z)=z^{1 / 3}$ has three branches.
Example 13: You can compute $f(z)=z^{c}$ for any complex c using the multi-valued or the principal logarithm using

$$
z^{c}=e^{c \log (z)}, \quad \text { Principal branch: } \quad z^{c}=e^{c \log (z)} .
$$

Example 14: HW: Using the principal branch of z^{i}, find its real and imaginary parts $u(r, \theta)$ and $v(r, \theta)$, using polar coordinates,

$$
z^{i}=u(r, \theta)+i v(r, \theta) .
$$

