Lecture 4: Sets of points in the complex plane

Today we define several concepts we will use throughout the semester. Below, $S \subset \mathbb{C}$ is a set of points in the complex plane.

Definition: A neighbourhood of a point z_{0} is a set $\left\{z:\left|z-z_{0}\right|<\epsilon\right.$, for any $\left.\epsilon>0\right\}$. It is also referred to as ϵ-neighbourhood.

Definition: A point $z_{0} \in S$ is an interior point of S if there exists a neighbourhood of z_{0} contained in S.

Definition: A point $z_{0} \in S$ is an exterior point of S if there exists a neighbourhood of z_{0} which does not intersect S.

Definition: A point $z_{0} \in S$ is a boundary point of S if every neighbourhood of z_{0} contains points both in S and outside of S. That is, z_{0} is neither an interior nor an exterior point.

Definition: The boundary of a set \mathbf{S} is the set of all boundary points of S.
Definition: The closure of a set \mathbf{S}, denoted by \bar{S}, is $S \cup$ boundary of S.
Definition: A set S is open if every point in S is interior.
Definition: A set S is closed if S contains all its boundary points.
Definition: A point z_{0} is an accumulation point of S if every neighbourhood of z_{0} contains a point in S distinct from z_{0}.

Definition: A set S is bounded if every $z \in S$ is within a disk $|z| \leq R$ for some R.
Definition: A set S is connected if for every pair of points $z_{1}, z_{2} \in S$ there is a smooth path in S connecting the points that is within S.

Definition: The complement of a set \mathbf{S}, denoted by S^{c}, is $\mathbb{Q}_{\S}^{\$}$ (everything in \mathbb{C} not in S).
Definition: The stereographic projection of the complex plane onto the Riemann sphere minus the north pole - define it geometrically. Infinity is projected onto the north pole.

Questions and examples:

1. Solve the inequalities $|x-c|<r,|x-c| \geq r$, where x, c, r are real.
2. Give examples of open sets, closed sets, and sets that are neither.
3. Is the set $\{1 / n, n=1,2,3, \ldots\}$ open, closed or neither? Explain.
4. What is the difference between an accumulation point and a boundary point?
5. Give examples of unbounded sets
6. Note: a neighbourhood of a point is an open disk centered at the point.
7. Where does the stereographic projection of points $z \in \mathbb{C}$ with $|z|>1$ lie? What if $|z|<1$? What if $|z|=1$?
8. The complement of a closed set is open. Why?
