Lecture 2: Complex numbers - Euler's formula

Some remarks on wednesday's material: if $z_{1}=a+i b, z_{2}=c+i d$,

$$
\begin{aligned}
& \left|z_{1}-z_{2}\right|=\text { distance between }(\mathrm{a}, \mathrm{~b}) \text { and }(\mathrm{c}, \mathrm{~d}) \\
& \overline{\bar{z}}=z
\end{aligned}
$$

$i z$ appears to be counterclockwise rotation by 90°

We also worked through example 2 on wednesday's notes.

1. Polar representation of z

To every point $z=a+i b$ we can associate polar coordinates r, θ.
Example 1: $z=1+i$ has values $r>1, \theta=\pi / 4+2 n \pi$ for any positive or negative integer $n=$ $\ldots,-2,-1,0,1,2, \ldots$

Note: Any pair of radius $r>0$ and argument θ uniquely defines a point in the plane. However, the argument θ that a point z has is not unique. Relations between a, b and r, θ

$$
\begin{gathered}
r=|z|=\sqrt{a^{2}+b^{2}}, \quad \theta=\arg (z)=\tan ^{-1}(b / a) \\
a=r \cos \theta, \quad b=r \sin \theta
\end{gathered}
$$

We will often be using the Principal argument $\operatorname{Arg}(z)=\theta$, where $-\pi<\theta \leq \pi$.

2. Euler's formula

We define e^{z} in terms of known Taylor series for real arguments, so that it agrees with e^{z} if $z \in \Re$:

$$
e^{z}=1+z+\frac{z^{2}}{2}+\frac{z^{3}}{3!}+\frac{z^{3}}{4!}+\frac{z^{3}}{5!}+\ldots
$$

It follows that

$$
e^{i \theta}=\cos \theta+i \sin \theta, \quad \theta \in \Re
$$

In turn, it follows that

$$
\cos \theta=\frac{e^{i \theta}+e^{-i \theta}}{2}, \quad \sin \theta=\frac{e^{i \theta}-e^{-i \theta}}{2 i}
$$

Thus we can write

$$
z=a+i b=r(\cos \theta+i \sin \theta)=r e^{i \theta}
$$

What makes this so convenient is that the complex exponential follows the same rules as the real exponential function, in particular

$$
e^{i \theta_{1}} e^{i \theta_{2}}=e^{i\left(\theta_{1}+\theta_{2}\right)}, \quad\left(e^{i \theta}\right)^{n}=e^{i n \theta}, \quad e^{-i \theta}=\frac{1}{e^{i \theta}}
$$

These are also referred to as DeMoivre's formulas. They will be particularly useful to compute powers, roots, products and quotients of complex numbers.

