Lecture 1: Complex numbers - algebra and geometry

1. Definitions

A complex number is any of the form

$$z = a + ib$$
, where $a, b \in \Re$ and $i^2 = -1$

The real part of z is Re(z) = a.

The imaginary part of z is Im(z) = a.

The complex conjugate of z is $\overline{z} = a - ib$.

The modulus of z is $|z| = \sqrt{a^2 + b^2}$.

Example 1: If z = 2 - 3i, then $\overline{z} = 2 + 3i$ and Im(z) = -3.

2. Algebra

Suppose $z_1 = a + ib$ and $z_2 = c + id$. Then define

Addition: $z_1 + z_2 = (a + c) + i(b + d)$

Subtraction: $z_1 - z_2 = (a - c) + i(b - d)$

Multiplication: $z_1z_2 = (a+ib)(c+id) = (ac-bd) + i(bc+ad)$

Division: $\frac{z_1}{z_2} = \frac{a+ib}{c+id} = \frac{(a+ib)(c-id)}{(c+id)(c-id)}$ and continue simplifying from there (multiplication by conjugate makes the denominator real).

Always write your answer in form so that real and imaginary part are clear.

Note: Addition and multiplication satisfies the usual commutative, associative and distributive laws of the real numbers.

3. Geometry

We can identify z = a + ib with the point P(a, b) in the complex plane, or more precisely, with the vector \overline{OP} . Then \overline{z} is symmetric about x-axis, and |z| is the length of the vector \overline{OP} . We interpreted addition, scalar multiplication, subtraction, multiplication by i geometrically.

Example 2: If A(1,-2), B(-3,4), C(2,2) and D is the midpoint of \overline{AB} , find $|\overline{CD}|$.

Example 3: Show that the diagonals of a parallelogram bisect each other (HW).

4. Some properties of modulus and complex conjugate

$$\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2} \quad \text{(prove it - in class)}$$

$$\overline{z_1 z_2} = \overline{z_1} \ \overline{z_2} \quad \text{(prove it - HW)}$$

$$|z_1 z_2| = |z_1||z_2| \quad \text{(prove it - HW)}$$

Nice and useful is the following:

$$z\overline{z} = |z|^2$$

Triangle Inequality:

$$|z_1 + z_2| \le |z_1| + |z_2|$$
 (prove it+interpret geometrically - in class)

It follows that:

$$||z_1| - |z_2|| \le |z_1 + z_2|$$
 (prove it using triangle ineq - HW)