1. Find the Taylor series of e^{z} about $z=1$ and state its region of convergence.
2. Expand $\sinh z$ into a Taylor series about the point $z=\pi i$ and state its region of convergence.
3. Find the Maclaurin series of $\cosh z$ by noting that $\cosh z=\cos (i z)$.
4. What is the largest circle within which the Maclaurin series for the function $\tanh z$ converges to $\tanh z$ for all z ? Write the first two nonzero terms of that series.
5. Find the Talor series of $1 / z^{2}$ about
(a) $z=-1$
(b) $z=2$
and state its region of convergence.
6. Show that when $0<|z|<4$,

$$
\frac{1}{4 z-z^{2}}=\frac{1}{4 z}+\sum_{n=0}^{\infty} \frac{z^{n}}{4^{n+2}}
$$

7. Show that when $z \neq 0$,

$$
\frac{\sin \left(z^{2}\right)}{z^{4}}=\frac{1}{z^{2}}-\frac{z^{2}}{3!}+\frac{z^{6}}{5!}-\frac{z^{10}}{7!}+\ldots
$$

8. (a) Show that when $0<|z-1|<2$,

$$
\frac{z}{(z-1)(z-3)}=\frac{-1}{2(z-1)}-3 \sum_{n=0}^{\infty} \frac{(z-1)^{n}}{2^{n+2}}
$$

(b) Use your result in (a) to find $\oint_{|z-1|=1} \frac{s}{(s-1)(s-3)} d s$
9. (a) Starting with the Taylor series for e^{z}, find the Laurent series representation of

$$
f(z)=\frac{\sinh (2 z)}{z^{4}}
$$

for $|z|>0$.
(b) Use your result in (a) to find

$$
\oint_{|z|=1} f(s) d s
$$

