1. (a) Evaluate $\int_{-3}^{3} \sqrt{z} d z$
(b) Find the principal branchcut of $f(z)=\sqrt{z^{2}-1}=\sqrt{z-1} \sqrt{z+1}$.
(c) Compute the integral $\int_{-i}^{i} \sqrt{z^{2}-1} d z$ using a path that follows the right side of the branchcut of f. (Use the integration formula in Schaum's Outline, p116.) Note: The principal branch of the antiderivative function

$$
F(z)=\frac{z}{2} \sqrt{z^{2}-1}-\frac{1}{2} \ln \left(z+\sqrt{z^{2}-1}\right)
$$

is analytic everywhere except on the line $z=\alpha, \alpha \in(-\infty, 1)$. (Can you show this?)
2. (a) Let $C_{R}:\left|z-z_{0}\right|=R$, with counterclockwise orientation, and f be analytic in a region containing C_{R}. Show that $\frac{1}{2 \pi i} \int_{C_{R}} \frac{f(z)}{z-z_{0}} d z$ is the average value of f over C_{R}.
(b) List 2-3 conclusions you can draw from the above.
3. In class we showed that

$$
\left|\int_{C} f(z) d z\right| \leq \int_{a}^{b}\left|f(z(t)) z^{\prime}(t)\right| d t \leq M \int_{a}^{b}\left|z^{\prime}(t)\right| d t=M L
$$

where M is an upper bound for $|f|$ on $\mathrm{C}(|f(z)| \leq M$ for all $z \in C)$ and $L=\int_{a}^{b}\left|z^{\prime}(t)\right| d t$ is the length of C.
(a) Use this fact to show that if f is analytic in $|z| \leq 1$, and $C_{\rho}:|z|=\rho<1$, then

$$
\left|\int_{C_{\rho}} z^{-1 / 2} f(z) d z\right| \leq 2 \pi M \sqrt{\rho}
$$

for some M that is independent of ρ. Conclude that as $\rho \rightarrow 0$, the integral vanishes.
(b) Suppose C_{R} is the upper semicircle $|z|=R$, with $\theta \in[0, \pi]$. Show that

$$
\lim _{R \rightarrow \infty} \int_{C_{R}} \frac{2 z^{2}-1}{z^{4}} d z=0 .
$$

4. Let $C:|z-i|=2$, with counterclockwise orientation. Evaluate
(a) $\oint_{C} \frac{d z}{z^{2}+4}$
(b) $\oint_{C} \frac{d z}{\left(z^{2}+4\right)^{2}}$
(c) $\oint_{C} \frac{d z}{4 z^{2}+1}$
(d) $\oint_{C} \frac{d z}{\left(4 z^{2}+1\right)^{2}}$
5. Let $C:|z|=3$, with counterclockwise orientation. Evaluate

$$
g(z)=\oint_{C} \frac{2 s^{2}-s-2}{s-z} d s
$$

for z either in the circle, or outside.
6. Let C denote the boundary of the square $[-3,3] \times[-3,3]$, with counterclockwise orientation. Evaluate
(a) $\oint_{C} \frac{\tan (z / 2)}{\left(z-x_{0}\right)^{2}} d z, \quad-3<x_{0}<3$
(b) $\oint_{C} \frac{\cosh (z)}{z^{4}} d z$
(c) $\oint_{C} \frac{2 s^{4}-s^{2}-2}{(s-z)^{3}} d s$
7. If a function f fails to be analytic at a point z_{0}, but is analytic at some point in every neighbourhood of z_{0}, then z_{0} is called a singular point of f. Find all the singular points of $\begin{array}{ll}\text { (a) } f(z)=\operatorname{sech} z & \text { (b) } f(z)=\tan z\end{array}$
8. Let f be analytic in a region D. Let C be a generic closed simple smooth curve in D, positively oriented, enclosing three distinct points z_{1}, z_{2}, z_{3}. Let $C_{k}:\left|z-z_{k}\right|=\epsilon_{k}, k=1,2,3$, be three circles, all positively oriented, and so small that they are completely contained in C and do not intersect. Let

$$
g(z)=\frac{f(z)}{\left(z-z_{1}\right)\left(z-z_{2}\right)^{2}\left(z-z_{3}\right)^{3}} .
$$

Show that

$$
\oint_{C} g(z) d z=\oint_{C_{1}} g(z) d z+\oint_{C_{2}} g(z) d z+\oint_{C_{3}} g(z) d z
$$

