1. Find the real and imaginary parts of $f(z)=\sin (z)$.
2. (a) Suppose $\mathbf{F}(x, y)=\langle P(x, y), Q(x, y)\rangle$ is a vector field defined in \Re^{2}. State Green's Theorem.
(b) Verify Green's Theorem for $\mathbf{F}=\langle x,-y\rangle$ where C is the closed curve surrounding the square $[-1,1] \times[-1,1]$, with counterclockwise orientation. (Green's theorem equates a line integral and an area integral. Verifying for an example means that you compute both and confirm that they are equal for the particular example.)
(c) Verify Green's Theorem for $\mathbf{F}=\left\langle x^{4}, x y\right\rangle$ where C is the closed curve surrounding the triangle with corners $(0,0)(1,0)(0,1)$, with counterclockwise orientation.
(d) Use Green's Theorem to evaluate

$$
\oint_{C}\left(3 y-e^{\sin x}\right) d x+\left(7 x+\sqrt{y^{4}+1}\right) d y
$$

where C is the circle $x^{2}+y^{2}=9$, with counterclockwise orientation.
3. In class we showed that $\left|\int_{C} f(z) d z\right| \leq \int_{a}^{b}\left|f(z(t)) z^{\prime}(t)\right| d t \leq M \int_{a}^{b}\left|z^{\prime}(t)\right| d t$ where M is an upper bound for $|f|$ on C , that is, $|f(z)| \leq M$ for all $z \in C$.
(a) Use this fact to show that

$$
\left|\int_{C_{R}} \frac{\log z}{z^{2}} d z\right|<2 \pi\left(\frac{\pi+\log R}{R}\right)
$$

where C_{R} is the circle $|z|=R>1$, with counterclockwise rotation.
(b) Use your result in (a) to show that the limit

$$
\lim _{R \rightarrow \infty} \int_{C_{R}} \frac{\log z}{z^{2}} d z=0 .
$$

4. Evaluate $\int_{C} f(z) d z$ where $f(z)=y-x+i 3 x^{2}$ and C
(a) is the line segment from $z=0$ to $z=1+i$
(b) consists of two line segments, one from $z=0$ to $z=i$ and the other from $z=i$ to $z=1+i$.
(c) Is f analytic in a region containing C ? Explain.
5. Evaluate $\int_{C} f(z) d z$ where $f(z)=\frac{z+2}{z}$ and C is
(a) the semicircle $z=2 e^{i \theta}, \theta \in[0, \pi]$
(b) the semicircle $z=2 e^{i \theta}, \theta \in[\pi, 2 \pi]$
(c) the semicircle $z=2 e^{i \theta}, \theta \in[0,2 \pi]$
(d) Is f analytic in a region containing C ? Explain.
6. Evaluate the following line integrals
(a) $\oint_{C}(3 z+1) d z$ where C is the boundary of the square with vertices at the points $z=$ $0,1,1+i, i$, with counterclockwise orientation.
(b) $\oint_{C} \pi e^{\pi \bar{z}} d z$ where C is as in (a).
(c) $\int_{C} z^{1 / 2} d z$ were C is the semicircular path $z=e^{i \theta}, \theta \in[0, \pi]$, from $z=1$ to $z=-1$.
(d) $\oint_{C} \frac{z^{2}}{z-3} d z$ were C is the circle $|z|=1$, with counterclockwise orientation.
(e) $\oint_{C} \operatorname{sech} z d z$ were C is the circle $|z|=1$, with counterclockwise orientation.
(f) $\oint_{C} \tan z d z$ were C is the circle $|z|=1$, with counterclockwise orientation.
(g) $\oint_{C} \log (z+2) d z$ were C is the circle $|z|=1$, with counterclockwise orientation.
7. Let C denote the boundary of the square $[-4,4] \times[-4,4]$, with counterclockwise orientation. Evaluate
(a) $\oint_{C} \frac{e^{-z} d z}{z-(\pi i / 2)}$
(b) $\oint_{C} \frac{\cos z}{z\left(z^{2}+8\right)} d z$
(c) $\oint_{C} \frac{z d z}{2 z+1}$
(d) $\oint_{C} \frac{1}{(s-z)^{3}} d s$
