- 1. Find the real and imaginary parts of $f(z) = \sin(z)$.
- 2. (a) Suppose $\mathbf{F}(x,y) = \langle P(x,y), Q(x,y) \rangle$ is a vector field defined in \Re^2 . State Green's Theorem.
 - (b) Verify Green's Theorem for $\mathbf{F} = \langle x, -y \rangle$ where C is the closed curve surrounding the square $[-1,1] \times [-1,1]$, with counterclockwise orientation. (Green's theorem equates a line integral and an area integral. Verifying for an example means that you compute both and confirm that they are equal for the particular example.)
 - (c) Verify Green's Theorem for $\mathbf{F} = \langle x^4, xy \rangle$ where C is the closed curve surrounding the triangle with corners (0,0) (1,0) (0,1), with counterclockwise orientation.
 - (d) Use Green's Theorem to evaluate

$$\oint_C (3y - e^{\sin x}) \, dx + (7x + \sqrt{y^4 + 1}) \, dy$$

where C is the circle $x^2 + y^2 = 9$, with counterclockwise orientation.

- 3. In class we showed that $|\int_C f(z) dz| \leq \int_a^b |f(z(t))z'(t)| dt \leq M \int_a^b |z'(t)| dt$ where M is an upper bound for |f| on C, that is, $|f(z)| \leq M$ for all $z \in C$.
 - (a) Use this fact to show that

$$\Big|\int_{C_R} \frac{\mathrm{Log}z}{z^2} \, dz\Big| < 2\pi \Big(\frac{\pi + \mathrm{Log}R}{R}\Big)$$

where C_R is the circle |z| = R > 1, with counterclockwise rotation.

(b) Use your result in (a) to show that the limit

$$\lim_{R \to \infty} \int_{C_R} \frac{\log z}{z^2} \, dz = 0$$

- 4. Evaluate $\int_C f(z) dz$ where $f(z) = y x + i3x^2$ and C
 - (a) is the line segment from z = 0 to z = 1 + i
 - (b) consists of two line segments, one from z = 0 to z = i and the other from z = i to z = 1+i.
 - (c) Is f analytic in a region containing C? Explain.
- 5. Evaluate $\int_C f(z) dz$ where $f(z) = \frac{z+2}{z}$ and C is
 - (a) the semicircle $z = 2e^{i\theta}, \theta \in [0, \pi]$
 - (b) the semicircle $z = 2e^{i\theta}, \theta \in [\pi, 2\pi]$
 - (c) the semicircle $z = 2e^{i\theta}, \theta \in [0, 2\pi]$
 - (d) Is f analytic in a region containing C? Explain.

- 6. Evaluate the following line integrals
 - (a) $\oint_C (3z+1) dz$ where C is the boundary of the square with vertices at the points z = 0, 1, 1+i, i, with counterclockwise orientation.
 - (b) ∫_C πe^{πz̄} dz where C is as in (a).
 (c) ∫_C z^{1/2} dz were C is the semicircular path z = e^{iθ}, θ ∈ [0, π], from z = 1 to z = -1.
 (d) ∮_C z²/(z-3) dz were C is the circle |z| = 1, with counterclockwise orientation.
 - (e) $\oint_C \operatorname{sech} z \, dz$ were C is the circle |z| = 1, with counterclockwise orientation.
 - (f) $\oint_C \tan z \, dz$ were C is the circle |z| = 1, with counterclockwise orientation.
 - (g) $\oint_C \text{Log}(z+2) dz$ were C is the circle |z| = 1, with counterclockwise orientation.
- 7. Let C denote the boundary of the square $[-4, 4] \times [-4, 4]$, with counterclockwise orientation. Evaluate

(a)
$$\oint_C \frac{e^{-z}dz}{z - (\pi i/2)}$$

(b)
$$\oint_C \frac{\cos z}{z(z^2 + 8)} dz$$

(c)
$$\oint_C \frac{z dz}{2z + 1}$$

(d)
$$\oint_C \frac{1}{(s - z)^3} ds$$