1. Assume a function $f(z)=u(r, \theta)+i v(r, \theta)$, where $z=x+i y$, and $x=r \cos \theta, y=r \sin \theta$, is differentiable at a nonzero point $z_{0}=r e^{i \theta} \neq 0$. Show that

$$
f^{\prime}(z)=e^{-i \theta}\left(u_{r}+i v_{r}\right)
$$

You may use any of the results you derived in your previous homework.
2. Suppose $f(z)=u(x, y)+i v(x, y)$ is analytic in a region R. Show that the level curves of u and v in the z-plane, $u=$ const and $v=$ const are orthogonal to each other.
3. (a) The inverse hyperbolic sine function is defined as $f(z)=\sinh ^{-1} z$

$$
w=\sinh ^{-1} z \Longleftrightarrow \sinh (w)=z
$$

where $\sinh (w)=\left(e^{w}-e^{-w}\right) / 2$. Solve the equation on the right for w to show that

$$
\sinh ^{-1} z=\log \left[z+\left(z^{2}+1\right)^{1 / 2}\right]
$$

(Hint: first multiply both sides by e^{w} and solve a quadratic equation for e^{w}.)
(b) Use (a) to show that

$$
\sin ^{-1} z=-i \log \left[i z+\left(1-z^{2}\right)^{1 / 2}\right]
$$

(Hint: $w=\sin ^{-1} z \Longleftrightarrow z=\sin w=\sinh (i w) / i$. Use (a) to solve this equation for w.)
4. Show that $\log \left[(1+i)^{2}\right]=2 \log (1+i)$ but $\log \left[(-1+i)^{2}\right] \neq 2 \log (-1+i)$.
5. Suppose that v is the harmonic conjugate of u. Explain why u is not the harmonic conjugate of v, unless both u and v are constant.
6. Evaluate

$$
\text { (a) } \int_{0}^{1}\left(1+i t^{2}\right) d t, \quad \text { (b) } \int_{0}^{\pi / 3} e^{i t} d t, \quad \text { (c) } \int_{0}^{\infty} e^{-z t} d t, \text { if } \operatorname{Re}(z)>0 .
$$

7. (a) Evaluate $\int_{0}^{2 \pi} e^{i k x} d x$ is $k \neq 0$ and if $k=0$.
(b) Use your result in (a) to evaluate $\int_{0}^{2 \pi} \sin (m x) \sin (n x) d x$, if $n \neq m$ and if $n=m$, where both $n, m>0$.
8. Suppose $f(x)$ is a real-valued continuous function. Show that

$$
\left|\int_{a}^{b} f(x) d x\right| \leq \int_{a}^{b}|f(x)| d x
$$

