TOPICS COVERED

Functions of a complex variable

Differentiability Cauchy-Riemann Equations Analytic functions Harmonic functions

- 1. Assume a function f(z) = u(x, y) + iv(x, y), where z = x + iy, is differentiable. Show that u, vmust satisfy the Cauchy-Riemann Equations.
- 2. Use your result in problem 1 to show that f'(z) does not exist at any point for

(a) $f(z) = \overline{z}$

(b) $f(z) = 2x + ixy^2$ (c) $f(z) = z - \overline{z}$

(d) $f(z) = e^x e^{-iy}$

3. Determine where f'(z) exists and find its value when

(a) f(z) = 1/z (b) $f(z) = x^2 + iy^2$

(c) f(z) = zIm(z)

4. Prove that each of these functions is entire

(a) f(z) = 3x + y + i(3y - x)

(b) $f(z) = \sin x \cosh y + i \cos x \sinh y$

(c) $f(z) = (z^2 - 2)e^{-x}e^{-iy}$

5. Assume a function is given in polar coordinates, $f(z) = u(r,\theta) + iv(r,\theta)$, where $u(r,\theta) = iv(r,\theta)$ $u(x(r,\theta),y(r,\theta))$ and $v(r,\theta)=v(x(r,\theta),y(r,\theta))$. Derive the Cauchy-Riemann equations for u, v in terms of derivatives with respect to r, θ , as follows:

Use $x = r \cos \theta$, $y = r \sin \theta$ and the chain rule to write $u_r, u_\theta, v_r, v_\theta$ in terms of u_x, u_y, v_x, v_y . Write your result as a linear system

$$\begin{pmatrix} u_r & v_r \\ u_\theta & v_\theta \end{pmatrix} = A \begin{pmatrix} u_x & v_x \\ u_y & v_y \end{pmatrix}$$

for some matrix A.

Invert A to write u_x, u_y, v_x, v_y in terms of $u_r, u_\theta, v_r, v_\theta$.

Rewrite the Cauchy-Riemann equations in terms of polar derivatives.

6. Show that u(x,y) is harmonic in some domain and find a harmonic conjugate v(x,y) for

(a) u(x,y) = 2x(1-y) (b) $u(x,y) = 2x - x^3 + 3xy^2$.