TOPICS COVERED

Functions of a complex variable
limits and continuity

1. Remember that $\log z$ is defined as

$$
\log (z)=\log \left(r e^{i \theta+2 n \pi)}\right)=\log (r)+i(\theta+2 n \pi)
$$

where $\log (r)=\ln r$ is the usual natural logarithm of a positive real number. We use Log instead of \ln nonetheless since it agrees with the principal logarithm value of r. The principal logarithm is defined as

$$
\log (z)=\log (r)+i \theta, \quad-\pi<\theta<\pi .
$$

Using the definition and the properties of the natural logarithm for positive real numbers, show that $\log (z)$ satisfies

$$
\log \left(z_{1} z_{2}\right)=\log \left(z_{1}\right)+\log \left(z_{2}\right), \quad \log \left(z_{1} / z_{2}\right)=\log \left(z_{1}\right)-\log \left(z_{2}\right), \quad \log \left(z^{p}\right)=p \log (z) .
$$

2. Remember that $z^{c}=e^{c \log (z)}$. The principal branch of z^{c} is $z^{c}=e^{c \log (z)}$. Using the principal branch of z^{i}, find its real and imaginary parts $u(r, \theta)$ and $v(r, \theta)$, using polar coordinates,

$$
z^{i}=u(r, \theta)+i v(r, \theta) .
$$

3. (a) Show that the level curves of $f(z)=z^{2}$ are orthogonal to each other.
(b) Repeat for $f(z)=\log z$.
4. Use the definition of limits to prove the following statements.
(a) $\lim _{z \rightarrow 2+i}\left(y^{2}+i(2 x-y)\right)=1+3 i$,
(b) $\lim _{z \rightarrow \infty} \frac{1}{z^{2}}=0$,
(c) $\lim _{z \rightarrow 0} \frac{1}{z^{2}}=\infty$.
5. Using the definition of limits, show that
(a) $\lim _{z \rightarrow \infty} f(z)=w_{0} \Longleftrightarrow \lim _{z \rightarrow 0} f\left(\frac{1}{z}\right)=w_{0}$,
(b) $\lim _{z \rightarrow z_{0}} f(z)=\infty \Longleftrightarrow \lim _{z \rightarrow z_{0}} \frac{1}{f(z)}=0$.
6. Using the results of the previous exercise, show that
(a) $\lim _{z \rightarrow \infty} \frac{4 z^{2}}{(z-1)^{2}}=4$,
(b) $\lim _{z \rightarrow 1} \frac{1}{(z-1)^{3}}=\infty$.
7. Using the definition of the limit, show that the function $f(z)=\bar{z}$ is nowhere differentiable.
8. (a) Prove that the quadratic formula solves the quadratic equation

$$
a z^{2}+b z+c=0
$$

when the coefficients a, b, c are complex numbers. Specifically, by completing the square on the left-hand side, prove that the roots of the equation are

$$
z=\frac{-b+\left(b^{2}-4 a c\right)^{1 / 2}}{2 a},
$$

where the two square roots are to be considered when $b^{2}-4 a c \neq 0$.
(b) Use the result in part (a) to find the roots of the equation

$$
z^{2}+2 z+(1-i)=0
$$

