## TOPICS COVERED

Complex numbers
Sets of complex numbers
Functions of a complex variable
complex and real valued
single- and multi-valued functions
examples: polynomials, exponentials, $\sin (z), \log (z), \log (z)$

1. Prove that $\sqrt{2}|z| \geq|\operatorname{Re}(z)|+|\operatorname{Im}(z)|$
2. Prove that $z$ is real if and only if $\bar{z}=z$
3. (a) Show that $\left|z-z_{0}\right|=R$ is the equation of a circle centered at $z_{0}$ of radius $R$.
(b) Show that the hyperbola $x^{2}-y^{2}=1$ can be written as $z^{2}+\bar{z}^{2}=2$
4. (a) Show that a set is open if and only if it does not contain any of its boundary points.
(b) Explain why a set $S$ and its complement $S^{c}$ have the same boundary.
(c) Explain why a set is open if and only if its complement is closed.
5. Sketch the following sets and determine whether they are open or closed, or neither.
(a) $|z-2+i| \leq 1$
(b) $|2 z+3|>4$
(c) $\operatorname{Im}(z)>1$
(d) $\operatorname{Im}(z)=1$
(e) $0 \leq \arg z \leq \pi / 4, z \neq 0$
(f) $|z-4| \geq|z|$
(g) $0<\left|z-z_{0}\right|<\delta$ where $z_{0}$ is a fixed point and $\delta>0$ (a positive real number).
6. Sketch each of the following sets and their closure
(a) $-\pi<\arg z<\pi, z \neq 0$
(b) $|R e z|<|z|$
(c) $|\operatorname{Re}(1 / z)|<1 / 2$
(d) $\operatorname{Re}\left(z^{2}\right)>0$
7. (a) Is the set $\{1 / n, n=1,2,3, \ldots\}$ open, closed or neither? Explain. Is it bounded? Is it connected?
(b) Is the set $\{1 / n, n=1,2,3, \ldots\} \cup\{0\}$ open, closed or neither? Explain.
(c) Give an example of a bounded, connected set.
(d) Give an example of a open and bounded set that is not connected.
8. Establish the identity

$$
1+z+z^{2}+\ldots+z^{n}=\frac{1-z^{n+1}}{1-z}, \quad z \neq 1
$$

and then use it to derive the identity:

$$
1+\cos \theta+\cos 2 \theta+\ldots+\cos (n \theta)=\frac{1}{2}+\frac{\sin \left[\left(n+\frac{1}{2}\right) \theta\right]}{2 \sin (\theta / 2)}, \quad 0<\theta<2 \pi
$$

Suggestion: As for the first identity, write $S=1+z+z^{2}+\ldots+z^{n}$ and consider the difference $S-z S$. To derive the second identity, write $z=e^{i \theta}$ and then use that

$$
1-z=e^{i \theta / 2} e^{-i \theta / 2}-e^{i \theta / 2} e^{i \theta / 2}
$$

on the bottom, and that

$$
1-z^{n}=e^{i \theta / 2} e^{-i \theta / 2}-e^{i \theta / 2} e^{i(n+1 / 2) \theta}
$$

on the top, cancel common factors, use Euler's identity and match real parts.
9. Find the Cartesian representation of (a) $e^{2 \pm 3 \pi i}$, (e) $\log (1+\sqrt{3} i), \quad$ (f) $\log (-e i), \quad$ (g) $\log (1-i)$.
10. Show that $\left|e^{z^{2}}\right| \leq e^{|z|^{2}}$
11. Show that
(a) $e^{\bar{z}}=\overline{e^{z}}$
(b) $e^{i \bar{z}}=\overline{e^{i z}}$ if and only if $z=n \pi, n=0, \pm 1, \pm 2, \ldots$
12. Schaums: 2.48, 2.49.
13. Find the principal value of (a) $i^{i}$, (b) $\frac{e}{2}(-1-\sqrt{3} i)^{3 \pi i}$, (c) $(1-i)^{4 i}$.
14. Find the preimage in the $z$ plane of the horizontal and vertical lines $u=$ const and $v=$ const in the $w$ plane if

$$
w=u+i v=\log (z) .
$$

Sketch the corresponding curves in the $z$-plane and the image in the $w$-plane.

