TOPICS COVERED

Complex numbers

Sets of complex numbers

Functions of a complex variable

complex and real valued single- and multi-valued functions examples: polynomials, exponentials, $\sin(z)$, log(z), Log(z)

- 1. Prove that $\sqrt{2}|z| \ge |Re(z)| + |Im(z)|$
- 2. Prove that z is real if and only if $\overline{z} = z$
- 3. (a) Show that |z z₀| = R is the equation of a circle centered at z₀ of radius R.
 (b) Show that the hyperbola x² y² = 1 can be written as z² + z
 ² = 2
- 4. (a) Show that a set is open if and only if it does not contain any of its boundary points.
 (b) Explain why a set S and its complement S^c have the same boundary.
 - (c) Explain why a set is open if and only if its complement is closed.
 - (c) Explain why a set is open if and only if its complement is closed.
- 5. Sketch the following sets and determine whether they are open or closed, or neither. (a) $|z - 2 + i| \le 1$ (b) |2z + 3| > 4 (c) Im(z) > 1 (d) Im(z) = 1
 - (e) $0 \le \arg z \le \pi/4, \ z \ne 0$ (f) $|z 4| \ge |z|$
 - (g) $0 < |z z_0| < \delta$ where z_0 is a fixed point and $\delta > 0$ (a positive real number).
- 6. Sketch each of the following sets and their closure (a) $-\pi < \arg z < \pi, z \neq 0$ (b) |Rez| < |z| (c) |Re(1/z)| < 1/2 (d) $Re(z^2) > 0$
- 7. (a) Is the set $\{1/n, n = 1, 2, 3, ...\}$ open, closed or neither? Explain. Is it bounded? Is it connected?
 - (b) Is the set $\{1/n, n = 1, 2, 3, ...\} \cup \{0\}$ open, closed or neither? Explain.
 - (c) Give an example of a bounded, connected set.
 - (d) Give an example of a open and bounded set that is not connected.
- 8. Establish the identity

$$1 + z + z^{2} + \ldots + z^{n} = \frac{1 - z^{n+1}}{1 - z}$$
, $z \neq 1$

and then use it to derive the identity:

$$1 + \cos\theta + \cos 2\theta + \ldots + \cos(n\theta) = \frac{1}{2} + \frac{\sin\left[(n + \frac{1}{2})\theta\right]}{2\sin(\theta/2)} , \quad 0 < \theta < 2\pi$$

Suggestion: As for the first identity, write $S = 1 + z + z^2 + \ldots + z^n$ and consider the difference S - zS. To derive the second identity, write $z = e^{i\theta}$ and then use that

$$1 - z = e^{i\theta/2}e^{-i\theta/2} - e^{i\theta/2}e^{i\theta/2}$$

on the bottom, and that

$$1 - z^{n} = e^{i\theta/2}e^{-i\theta/2} - e^{i\theta/2}e^{i(n+1/2)\theta}$$

on the top, cancel common factors, use Euler's identity and match real parts.

- 9. Find the Cartesian representation of (a) $e^{2\pm 3\pi i}$, (b) $e^{(2+\pi i)/4}$, (c) $\log e$, (d) $\log i$, (e) $\log(1+\sqrt{3}i)$, (f) $\log(-ei)$, (g) $\log(1-i)$.
- 10. Show that $|e^{z^2}| \le e^{|z|^2}$
- 11. Show that (a) $e^{\overline{z}} = \overline{e^{\overline{z}}}$ (b) $e^{i\overline{z}} = \overline{e^{iz}}$ if and only if $z = n\pi$, $n = 0, \pm 1, \pm 2, ...$
- 12. Schaums: 2.48, 2.49.
- 13. Find the principal value of (a) i^i , (b) $\frac{e}{2}(-1-\sqrt{3}i)^{3\pi i}$, (c) $(1-i)^{4i}$.
- 14. Find the preimage in the z plane of the horizontal and vertical lines u = const and v = const in the w plane if

$$w = u + iv = \log(z)$$
.

Sketch the corresponding curves in the z-plane and the image in the w-plane.