TOPICS COVERED

Complex numbers
Cartesian form $z=a+i b$
Algebra in cartesian form. Geometric representation
Modulus, conjugate. Properties. Triangle inequality
Polar form $z=r(\cos \theta+i \sin \theta)$
Euler's formula, exponential form $z=r e^{i \theta}$
Algebra in exponential form (products, quotients, powers, roots)
Fundamental Theorem of Algebra

1. Compute $\frac{5}{(1-i)(2-i)(3-i)}$.
2. Prove that $\overline{z_{1} z_{2}}=\overline{z_{1}} \overline{z_{2}}$
3. Prove that $\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|$
4. Show that $\left|\left|z_{1}\right|-\left|z_{2}\right|\right| \leq\left|z_{1}+z_{2}\right|$ Hint: start from $z_{1}=z_{1}+z_{2}-z_{2}=z_{1}+z_{2}+\left(-z_{2}\right)$ and use the triangle inequality. Repeat with z_{2}.
5. Use complex numbers to show that the diagonals of a parallelogram bisect each other.
6. Let $z_{1}=1+i, z_{2}=-1+\sqrt{3} i$. For each of the following, find the cartesian and the exponential form, and state $\operatorname{Arg}(z),|z|, \operatorname{Re}(z), \operatorname{Im}(z)$.
(a) z_{1} and z_{2},
(b) z_{1}^{10},
(c) $z_{1} z_{2}$,
(d) z_{1} / z_{2}.
7. Find each of the following complex numbers z in cartesian form by first writing the individual factors in exponential form, performing the needed operations, and finally changing back to cartesian coordinates. State $\operatorname{Arg}(z),|z|, \operatorname{Re}(z), \operatorname{Im}(z)$.
(a) $z=\frac{-2}{1+\sqrt{3} i}$,
(b) $z=\frac{i}{-2-2 i}$,
(c) $z=(\sqrt{3}-i)^{6}$,
(d) $z=i(1-\sqrt{3} i)(\sqrt{3}+i)$,
(e) $z=i(1+\sqrt{3} i)^{-10}$.
8. Show that (a) $\left|e^{i \theta}\right|=1$, (b) $\overline{e^{i \theta}}=e^{-i \theta}, \quad$ (c) $\left(e^{i \theta}\right)^{2}=e^{2 i \theta}$,
9. (a) Use 8(c) above to show that

$$
\left.\sin (2 \theta)=2 \sin (\theta) \cos (\theta), \quad \cos (2 \theta)=\cos ^{2} \theta-\sin ^{2} \theta\right)
$$

(b) Use $\cos ^{2} \theta+\sin ^{2} \theta=1$ and your result in (a) to show that

$$
\cos ^{2} \theta=\frac{1+\cos 2 \theta}{2}, \quad \sin ^{2} \theta=\frac{1-\cos 2 \theta}{2}
$$

10. In each case, find all the roots, exhibit them geometrically, and point out which is the principal root. Note that the roots $z=\left(z_{0}\right)^{1 / n}$ are all the n roots of the equation $z^{n}=z_{0}$.
(a) $(2 i)^{1 / 2}$,
(b) $(1-\sqrt{3} i)^{1 / 2}$,
(c) $(-1)^{1 / 3}$,
(d) $(-16)^{1 / 4}$,
(e) $8^{1 / 6}$,
(f) $(-4 \sqrt{2}+4 \sqrt{2} i)^{1 / 3}$.
