TOPICS COVERED

Complex numbers

Cartesian form z = a + ibAlgebra in cartesian form. Geometric representation Modulus, conjugate. Properties. Triangle inequality Polar form $z = r(\cos \theta + i \sin \theta)$ Euler's formula, exponential form $z = re^{i\theta}$ Algebra in exponential form (products, quotients, powers, roots) Fundamental Theorem of Algebra

1. Compute
$$\frac{5}{(1-i)(2-i)(3-i)}$$

- 2. Prove that $\overline{z_1 z_2} = \overline{z_1} \ \overline{z_2}$
- 3. Prove that $|z_1 z_2| = |z_1||z_2|$
- 4. Show that $||z_1| |z_2|| \le |z_1 + z_2|$ Hint: start from $z_1 = z_1 + z_2 z_2 = z_1 + z_2 + (-z_2)$ and use the triangle inequality. Repeat with z_2 .
- 5. Use complex numbers to show that the diagonals of a parallelogram bisect each other.
- 6. Let z₁ = 1+i, z₂ = −1+√3i. For each of the following, find the cartesian and the exponential form, and state Arg(z), |z|, Re(z), Im(z).
 (a) z₁ and z₂, (b) z₁¹⁰, (c) z₁z₂, (d) z₁/z₂.
- 7. Find each of the following complex numbers z in cartesian form by first writing the individual factors in exponential form, performing the needed operations, and finally changing back to cartesian coordinates. State Arg(z), |z|, Re(z), Im(z).

(a)
$$z = \frac{-2}{1 + \sqrt{3}i}$$
, (b) $z = \frac{i}{-2 - 2i}$, (c) $z = (\sqrt{3} - i)^6$,
(d) $z = i(1 - \sqrt{3}i)(\sqrt{3} + i)$, (e) $z = i(1 + \sqrt{3}i)^{-10}$.

8. Show that (a) $|e^{i\theta}| = 1$, (b) $\overline{e^{i\theta}} = e^{-i\theta}$, (c) $(e^{i\theta})^2 = e^{2i\theta}$,

9. (a) Use 8(c) above to show that

$$\sin(2\theta) = 2\sin(\theta)\cos(\theta)$$
, $\cos(2\theta) = \cos^2\theta - \sin^2\theta$.

(b) Use $\cos^2 \theta + \sin^2 \theta = 1$ and your result in (a) to show that

$$\cos^2 \theta = \frac{1 + \cos 2\theta}{2}$$
, $\sin^2 \theta = \frac{1 - \cos 2\theta}{2}$.

10. In each case, find all the roots, exhibit them geometrically, and point out which is the principal root. Note that the roots $z = (z_0)^{1/n}$ are all the *n* roots of the equation $z^n = z_0$.

(a)
$$(2i)^{1/2}$$
, (b) $(1 - \sqrt{3}i)^{1/2}$, (c) $(-1)^{1/3}$

(d) $(-16)^{1/4}$, (e) $8^{1/6}$, (f) $(-4\sqrt{2} + 4\sqrt{2}i)^{1/3}$.