MATH 313 Exam 3- Review Topics and Problems

1. Finding Taylor series and Laurent series

- Using the definition (for Taylor series only) HW 8: 1,2,4.
- Using known series expansions, together with substitution and multiplication. HW 8: 3, 5, 6, 7, 8a, 9a. HW 9: 1,2,3. HW 10: $1,2$.
- Why are zeros of (nontrivial) analytic functions isolated?
- What is the domain of convergence of Taylor and Laurent series? HW 8: 4, 5 .

2. Singular points and residues

- Classify singular points (poles of finite order, essential singularities, removable singularities). HW 10: 2, 3 .
- Find residues using any of the methods summarized below.
(1) Find the Laurent Series, at least a few terms thereof.
(2) Using the Cauchy Integral formula $\phi\left(z_{0}\right)=\frac{1}{2 \pi i} \oint_{C} \frac{\phi(z)}{z-z_{0}} d s$ where C surrounds z and f is analytic, in the following way:

$$
\oint_{C} \frac{\phi(z)}{\left(z-z_{0}\right)^{n+1}} d z=\frac{2 \pi i}{n!} \phi^{(n)}\left(z_{0}\right)
$$

so the residue of f at z_{0} is $b_{1}=\phi^{(n)}\left(z_{0}\right) / n!$.
(3) If $f(z)=p(z) / q(z)$ has a simple pole at z_{0}, where p, q are analytic at z_{0}, then the residue at z_{0} is

$$
\frac{p\left(z_{0}\right)}{q^{\prime}\left(z_{0}\right)}
$$

(Can you show this?) HW 11, \#3

- Evaluate contour integrals using residues. HW 8: 8b, 9b. HW 10: 4. Also used in HW 11: 1, 2, 4.

3. Evaluating real integrals using residues

- Integrals of the form $\int_{-\infty}^{\infty} f(x) d x$. HW 11: 1a, 2a, 4.
- Integrals of the form $\int_{-\infty}^{\infty} f(x) \cos x d x$ and $\int_{-\infty}^{\infty} f(x) \sin x d x$. HW 11: 1b, 2bc.

Jordan's inequality. When do you need it? HW 11: 2c.

