MATH 313 Exam 2- Review Topics and Problems

1. Evaluating Integrals

Evaluate integrals using any of the below (including improper integrals):
(1) $\int_{a}^{b} f(t) d t=\int_{a}^{b} u(t) d t+i \int_{a}^{b} v(t) d t$
(2) $\int_{C} f(z) d z=\int_{a}^{b} f^{\prime}(z(t)) z^{\prime}(t) d t$ where the curve C is parametrized by $z(t), t \in[a, b]$.
(3) If f analytic in region D containing a smooth curve C then

- If C simple, closed: $\oint_{C} f(z) d z=0$ (this generalizes to regions with holes.)
- If C goes from A to $B: \int_{C} f(z) d z=\int_{A}^{B} f(z) d z$ is path independent.
(4) If $f(z)=F^{\prime}(z)$ in a region D containing a smooth curve C from A to B, then - If C goes from A to $B: \int_{C} f(z) d z=\int_{A}^{B} f(z) d z=F(B)-F(A)$ (Note: F has to be analytic in D. Why?)
(5) Cauchy integral theorem and its derivatives

$$
f(z)=\frac{1}{2 \pi i} \oint_{C} \frac{f(s)}{s-z} d s, \quad f^{(n)}(z)=\frac{n!}{2 \pi i} \oint_{C} \frac{f(s)}{(s-z)^{n+1}} d s
$$

Examples: Homework \#5: 6,7.
Homework \#6: 4,5,6,7,
Homework \#7: 1,4,5,6.
Homework \#7: 8. Similar examples done in class.
Example: Let f be analytic in a region D. Let C be a generic closed simple smooth curve in D enclosing a point z_{0}. Let $C_{\epsilon}:\left|z-z_{0}\right|=\epsilon$ be a circle completely contained in C.
Show that

$$
\oint_{C} \frac{f(z)}{z-z_{0}} d z=\oint_{C_{\epsilon}} \frac{f(z)}{z-z_{0}} d z
$$

Example: Evaluate $\oint_{|z-i|=4} \frac{z^{4}-3 z^{2}}{(z-1)(z+2 i)^{2}} d z$
Example: Show that $\oint_{|z+i|=1.2} \frac{f(z)}{(z-1)(z+2 i)^{2}} d z=-2 \pi i\left[\frac{f^{\prime}(-2 i)}{1+2 i}+\frac{f(-2 i)}{(1+2 i)^{2}}\right]$

2. Bounding Integrals

Bound integrals and use the bound to determine certain limits.
Examples: HW 6: 3, HW 7: 3

3. Analytic functions

(1) Find real and imaginary parts, find singular points, define branch cuts.

Examples: HW 6: 1, HW 7: 1,7.
(2) Show $f\left(z_{0}\right)$ is average of values on circle around it. Conclude.

Examples: Homework \#7: 2.
(3) List all properties of analytic functions you can think of.
(4) Give an example of a function that is not analytic at a point. Explain.

Give an example of a function that is not analytic anywhere. Explain.

