MATH 313 – GENERAL SYLLABUS

Texts: Shaum's outline, Complex Variables Churchill/Brown or Brown/Churchill, Complex variables and applications

Course Outline:

- Week 1: Basics.
 - Algebra of complex numbers (products, quotients, powers, roots)
 - Geometric representation in the complex plane
 - Cartesian and exponential representations. Euler's Formula.
- Weeks 2-3: Functions of a complex variable.
 - Mapping, images of points, curves, domains
 - Exponential function. Multivalued logarithm, principal branch.
 - preimages of vertical/horizontal lines (level curves of u,v)
 - Limits, ϵ - δ definition
 - Continuity
- Weeks 3-4: Complex differentiation and Cauchy-Riemann equations.
 - Cauchy-Riemann equations in Cartesian and polar variables
 - Harmonic functions, harmonic conjugates
- Week 5: Catch up and Exam 1
- Week 6-7: Complex integration and Cauchy's Theorem

$$-\int_{a}^{b} f(t)dt$$
, where $f(t) = u(t) + iv(t)$

- Line integrals $\int_C f(z) dz$, where C is a contour
- Cauchy-Goursat
- Path independence
- Cauchy integral formula
- Analytic functions
- Maximum principle

- Week 8-9: Series
 - Taylor series
 - Laurent series
 - Differentiation, integration, uniqueness of series
 - Uniform convergence
- Week 9: Catch up and Exam2
- Weeks 10-11: Residues and poles
 - Residue Theorem
 - Residues at poles
 - Evaluating integrals and series using residues
 - Integrals involving sines and cosines
 - Integrals involving branch cuts
- Week 12: Mappings
 - Linear functions
 - Linear fractional transformations
 - Functions z^2 , $z^{1/2}$, e^z , $\sin(z)$
- Week 13: Catch up and Exam3
- Week 14-15: Conformal mappings and applications
 - Definition and properties
 - Application: temperature distribution
 - Application: two-dimensional fluid flow
 - Application: potential flow past a cylinder
- Week 15: Review
- Wed, May 11, 12:30-2:30pm: Final Exam