MATH 313 - Final Summary and review topics

1. Complex numbers

- Add, multiply, divide complex numbers. Write in exponential form. Find logarithms and exponentials. Plot in the complex plane. Represent complex numbers, their sums, products,
- Find roots and powers.
- Derive simple trig identities using rules

2. Complex functions

- definition of the derivative
- Cauchy-Riemann equations (can you derive them?)
- Determine where functions are differentiable. Justify.
- Give an example of a function that is not analytic at a point. Explain.
- harmonic functions (what are they? show given function is harmonic)
- harmonic conjugate (find them)

3. Mappings

- Find where points, curves and regions are mapped to by a given function $f(z)$.
- Properties of conformal maps.
- Given a map $w=f(z)$ and a harmonic function in the w-plane, find a harmonic function in the z-plane.
- What are linear fractional transformations? What special properties do they have?

4. Cauchy integral theorem

If f is analytic in a region containing simple close curve C, then

$$
\oint_{C} f(z) d z=0 .
$$

Furthermore,

$$
f(z)=\frac{1}{2 \pi i} \oint_{C} \frac{f(s)}{s-z} d s, \quad f^{(n)}(z)=\frac{n!}{2 \pi i} \oint_{C} \frac{f(s)}{(s-z)^{n+1}} d s
$$

Conclusions:

- If f has n singularities at $z_{k}, k=1, \ldots, n$, contained in a simple closed curve C, then

$$
\oint_{C} f(z) d s=\sum_{k=1}^{n} \oint_{C_{k}} f(z) d z
$$

where C_{k} is a simple closed curve containing only the singularity at z_{k}. (Why? Show this for $n=2$)

- $f\left(z_{0}\right)$ is average of values on circle around it (show this)
- Extrema of f occur on boundary of domain, not in interior (explain why)

5. Taylor and Laurent series, singular points, residues

Every function has a Laurent series representation of the form

$$
f(z)=a_{0}+a_{1}\left(z-z_{0}\right)+a_{2}\left(z-z_{0}\right)^{2}+\ldots+\frac{b_{1}}{z-z_{0}}+\frac{b_{2}}{\left(z-z_{0}\right)^{2}}+\frac{b_{2}}{\left(z-z_{0}\right)^{3}}+\ldots
$$

in an annular region centered at z_{0} in which f is analytic. If z_{0} is an isolated singularity of f and C is a closed curve containing z_{0} and no other singularities of f, it follows from the Cauchy Integral Theorem that

$$
\oint_{C} f(z) d z=2 \pi i b_{1}
$$

The number b_{1} is called the residue of f at z_{0}.

- Find Taylor series for analytic functions, using definition or manipulation of known series. Why are zeros of (nontrivial) analytic functions isolated?
- Find Laurent series using manipulation of known Taylor series.
- What is the domain of convergence of Taylor and Laurent series?
- Find and classify singular points (poles of finite order, essential singularities, removable singularities).
- List all properties of analytic functions you can think of.
- Find residues at z_{0} using any of the methods summarized below.
(1) Find the Laurent Series about z_{0}, at least a few terms thereof.
(2) Using the Cauchy Integral formula, as follows: Assume f has an isolated singularity at z_{0}. If the singularity is a simple pole, $f=\phi(z) /\left(z-z_{0}\right)$ where ϕ analytic at z_{0}, then

$$
\oint_{C} f(z) d z=\oint_{C} \frac{\phi(z)}{z-z_{0}} d z=2 \pi i \phi\left(z_{0}\right),
$$

so the residue of f at z_{0} is $b_{1}=\phi\left(z_{0}\right)$. If the singularity is a multiple pole, $f=\phi(z) /\left(z-z_{0}\right)^{n}$ where ϕ analytic at z_{0}, then

$$
\oint_{C} f(z) d z=\oint_{C} \frac{\phi(z)}{\left(z-z_{0}\right)^{n+1}} d z=\frac{2 \pi i}{n!} \phi^{(n)}\left(z_{0}\right)
$$

so the residue of f at z_{0} is $b_{1}=\phi^{(n)}\left(z_{0}\right) / n$!.
(3) If $f(z)=p(z) / q(z)$ has a simple pole at z_{0}, where p, q are analytic at z_{0}, then

$$
\oint_{C} f(z) d z=\oint_{C} \frac{p(z)}{q(z)} d z=2 \pi i \frac{p\left(z_{0}\right)}{q^{\prime}\left(z_{0}\right)}
$$

so the residue at z_{0} is $b_{1}=p\left(z_{0}\right) / q^{\prime}\left(z_{0}\right)$.

6. Evaluating Line Integrals

Evaluate integrals using any of the below (including improper integrals):
(1) $\int_{a}^{b} f(t) d t=\int_{a}^{b} u(t) d t+i \int_{a}^{b} v(t) d t$
(2) $\int_{C} f(z) d z=\int_{a}^{b} f(z(t)) z^{\prime}(t) d t$ where the curve C is parametrized by $z(t), t \in[a, b]$. Be able to parametrize any curve (circles, lines, parabolas)!
(3) If f is analytic, with $f(z)=F^{\prime}(z)$, in a region D containing a smooth curve C from A to B, then

$$
\int_{C} f(z) d z=\int_{A}^{B} f(z) d z=F(B)-F(A)
$$

(4) If f analytic in region D containing a simple closed curve C, except for n isolated singularities at $z_{k}, k=1, \ldots, n$, then

$$
\oint_{C} f(z) d z=2 \pi i \sum_{k=1}^{n} B_{k}
$$

where B_{k} are the residues at z_{k}.

7. Evaluating real integrals using residues

- Bound integrals and use the bound to determine certain limits.
- Integrals of the form $\int_{-\infty}^{\infty} f(x) d x$.
- Integrals of the form $\int_{-\infty}^{\infty} f(x) \cos x d x$ and $\int_{-\infty}^{\infty} f(x) \sin x d x$.
- Jordan's inequality. When do you need it?

Review Problems: Choose problems from HW and Exams on the topics listed above. You can skip the following problems, HW 1: 5, 8. HW 2: 1, 3, 4, 7, 8. HW 3: $1,2,3$ (read only), $4,5,6,8$. HW 4: 5. HW 5 : 1,2 (read only), $3,4,8$ (read only). HW 6: 2. HW 7: 1 . HW $8: 2,3,5,6,7$. HW 10: 1a. HW 11: 3.

