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The Haldane Chern insulator
In two-dimensional momentum space,

H(k) =
(
t1 ∑

j
cos(k · aj )

)
σx −

(
t1 ∑

j
sin(k · aj )

)
σy +

(
M + 2t2 ∑

j
sin(k · bj )

)
σz ,

σx =

[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
.

This is essentially
T2 → Ham(1,C2)

where Ham(1,C2) is the space of all two-by-two “insulating”
Hamiltonians with one negative eigenvalue.

Mathematically, the torus is
the Pontryagin dual of Z2,

T2 ∼= hom(Z2,T)
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Momentum torus
Basic model of free fermions, H periodic
on `2(Z2)⊗C2k .

Fourier transformed H becomes

T2 → Ham(k,C2k )

Spectrally flattened, Fourier transformed
T2 → Gr(k,C2k )

...
...

...
...

Ham(k,C2k ) =
{

A ∈M2k (C)
∣∣A† = A, 0 /∈ σ(A), sig(A) = 0

}
sig(X ) = #(positive eigenvalues)−#(negative eigenvalues)[

T2,Ham(k,C2k )
]
≈ K̃0(T2) ∼= Z

Gr(k,C2k ) =
{

A ∈M2k (C)
∣∣A† = A, A2 = A, rank(A) = k

}
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Breaking the momentum torus

1 Finite area
2 Open boundary conditions
3 Boundary between two phases
4 Quasicrystals

5 Disorder
6 Defects

A few of these can be handled with periodic boundary conditions (flux
torus/twisted boundary conditions, Bott index).
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Quasicrystalline Chern insulator
Aperiodic Ammann-Beenker tiling.

For Chern number −1:

µ = 1, t = 1, ∆ = 2.

For Chern number 0:

µ = 1, t = 1
3 , ∆ = 2.

“px + ipy” tight binding model

HQC:
Hj = −µσz

Hjk = −tσz −
i
2∆σx cos(αjk )−

i
2∆σy sin(αjk )

Fulga, I. C., Pikulin, D. I. and TL. “Aperiodic Weak Topological Superconductors.”
Physical Review Letters 116.25 (2016): 257002.
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Gapped and ungapped by location

-10 -5 0 5 10
-10

-8
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-4

-2

0

2

4

6

8

10

Set constants for Chern number
-1 on the left (black vertices).

Set constants for Chern number
0 on the right (red vertices).

The units indicated define posi-
tion operators X and Y . Us-
ing Dirichlet boundary condi-
tions (just compress).

gapless
gapped gapped

gapped

gapless

Kitaev: How can we described
gapped and gapless using the
same Hilbert space?

Kitaev, A. “K-theoretic classification of free-fermion Hamiltonians.” West Coast Op-
erator Algebra Seminar, Albuquerque, 2011.
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Topology from joint spectrum

Finite-area model summarized by three Hermitian matrices: X , Y , H.

Need ‖XH −HX‖ and ‖YH −HY ‖ both “small” so adjust units:

X  κX , Y  κY

Joint approximate eigenvectors: ‖v‖ = 1 and λj ∈ R with

(
‖Xv − λ1v‖2 + ‖Y v − λ2v‖2 + ‖Hv − λ3v‖2

) 1
2

small. Look for local minima?
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Topology from joint spectrum
If we set

Qλ(X ,Y ,H) = (X − λ1)
2 + (Y − λ2)

2 + (H − λ3)
2

then

min
‖v‖=1

(
‖Xv − λ1v‖2+‖Y v − λ2v‖2+‖Hv − λ3v‖2

) 1
2 = (σmin(Qλ(X ,Y ,H))

1
2 .

Notation: σmin(B) is the smallest singular value of a matrix.

Def. The quadratic spectrum of a triple (X ,Y ,H) of Hermitian matrices
is the set

ΛQ(X ,Y ,H) =
{

λ ∈ R3 ∣∣ σmin(Qλ(X ,Y ,H) = 0
}
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Quadratic joint spectrum

Def. The quadratic spectrum of a triple (X ,Y ,H) of Hermitian matrices
is the set

ΛQ(X ,Y ,H) =
{

λ ∈ R3 ∣∣ σmin(Qλ(X ,Y ,H) = 0
}

Too often, this is the empty set.

A partial fix:

Def. The quadratic pseudospectrum of a triple (X ,Y ,H) of Hermitian
matrices is based on the function

λ 7→ (σmin(Qλ(X ,Y ,H)))
1
2

so ΛQ
ε (X ,Y ,H) =

{
λ ∈ R3

∣∣∣ (σmin(Qλ(X ,Y ,H)))
1
2 ≤ ε

}
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Clifford joint spectrum
Define “the localizer”

Lλ(X ,Y ,H) = (X − λ1)⊗ σx + (Y − λ2)⊗ σy + (H − λ3)⊗ σz

Assuming ‖XH −HX‖ and ‖YH −HY ‖ are small,(
Lλ(X ,Y ,H)

)2 ≈ Qλ(X ,Y ,H)⊗ I2.

Def. (Kisil) The Clifford spectrum of a triple (X ,Y ,H) of Hermitian
matrices is the set

Λ(X ,Y ,H) =
{

λ ∈ R3 ∣∣ σmin(Lλ(X ,Y ,H)) = 0
}

Def. The Clifford pseudospectrum of a triple (X ,Y ,H) of Hermitian
matrices is based on the function

λ 7→ σmin(Lλ(X ,Y ,H)

so Λε(X ,Y ,H) =
{

λ ∈ R3 ∣∣ σmin(Lλ(X ,Y ,H)) ≤ ε
}
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A “sphere” emerges

Separate Hilbert space for bulk
and boundary:

E
n
e
rg
y

Same Hilbert space, bulk and
boundary (slice at fixed-y),
Λε(X ,Y ,H):

E
n
e
rg
y

Square sample with quasiperiodic
Chern insulator on all of sample.
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A “sphere” emerges
Square sample with quasiperiodic Chern insulator everywhere.

Λε(X ,Y ,H)
for ε = 0.02

λ (x,y,E )

En
er

gy

x position
y position

σmin Lλ X,Y,H))
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Chern insulator on the left, trivial
insulator on the right.
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K -theory
Consider this topological space

M = Λ0.1(X ,Y ,H)

and the C∗-algebra C(M).

This has “the same” K -theory as a sphere,
with the interesting element represented by

L(x , y , z) =
[

z (x + 5)− iy
(x + 5) + iy −z

]
∈M2(C(M)).

For conventional picture of K -theory: spectrally flatten; take a formal
difference.

Ugly math defines an approximate homomorphism C(M) ⇀ MN(C)
with x 7→ X , y 7→ Y , z 7→ H. Applying this to K -theory we get

L(−5,0,0)(X ,Y ,H) =

[
H (X + 5)− iY

(X + 5) + iY −H

]
∈M2N(C)

Where this sits in K0(MN(C)) ∼= Z can be done on a computer,[
L(−5,0,0)(X ,Y ,H)

]
7→ 1

2sig
(

L(−5,0,0)(X ,Y ,H)
)
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]
∈M2N(C)

Where this sits in K0(MN(C)) ∼= Z can be done on a computer,[
L(−5,0,0)(X ,Y ,H)

]
7→ 1

2sig
(

L(−5,0,0)(X ,Y ,H)
)
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A Local Index
We obtain a local index for a finite system, which can be centered at any
point not in Λ(X ,Y ,H),

indλ(X ,Y ,H) =
1
2Sig (Lλ (X ,Y ,H))

σmin (Lλ (X ,Y ,H)) large means more protection by the local index.
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Other local K -theory markers:
1 Kitaev (2006)
2 Bianco and Resta (2011)
3 Li and Mong (2019)
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Quantifying topological protection of bulk points

‖∆H‖ < σmin(Lλ(X ,Y ,H)) =⇒ indλ(X ,Y ,H) = indλ(X ,Y ,H +∆H)
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Quantifying protection of boundary states
Assume ind(x0,y0,0)(X ,Y ,H) does
not equal ind(x1,y1,0)(X ,Y ,H).

Also assume

‖∆H‖ < σmin(L(xj ,yj ,0)(X ,Y ,H)).

This means

L(xt ,yt ,0)(X ,Y ,H + ∆H)

has an eigenvalue cross from
positive to negative.

Thus there is a point µ on the line
with µ ∈ Λ(X ,Y ,H).

x1,y1( )
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Quantifying protection of boundary states
Assume ind(x0,y0,0)(X ,Y ,H) 6= ind(x1,y1,0)(X ,Y ,H).

Also assume, for j = 0, 1,
‖∆H‖ < σmin(L(xj ,yj ,0)(X ,Y ,H)).

We have proven there is a unit vector v with(
‖Xv − xtv‖2+‖Y v − ytv‖2+‖Hv − 0v‖2

) 1
2

less than some specific bound.
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Other places localizer has been used

1D systems, class BDI.
Weak topological insulators in 2D, class D.
Disordered semimetals.
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