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The Haldane Chern insulator

In two-dimensional momentum space,
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This is essentially
T — Ham(l,Cz)

where Ham(1, C?) is the space of all two-by-two “insulating”
Hamiltonians with one negative eigenvalue.
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In two-dimensional momentum space,

H(k) = <t1 Zcos (k- aj)) (tl Zsm (k- aj)) oy + <M+2tzzsin(k-bj)> o,
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This is essentially
T — Ham(l,Cz)

where Ham(1, C?) is the space of all two-by-two “insulating”

Hamiltonians with one negative eigenvalue.

Mathematically, the torus is
the Pontryagin dual of Z?,

T? = hom(Z2,T)
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Momentum torus

Basic model of free fermions, H periodic
on (?(Z?) @ C?k.
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Momentum torus

Basic model of free fermions, H periodic
on (?(Z?) @ C?k.
Fourier transformed H becomes

T? — Ham(k, C2k)

Spectrally flattened, Fourier transformed
T? — Gr(k, C%)

Ham(k,C%%) = { A€ My (C)| AT = A, 0 & 0(A), sig(A —0}
sig(X) = #(positive eigenvalues) — #(negative elgenvalues)

[T"“, Ham(k,Czk)} ~ KO(T?) = Z

Gr(k,C2k) = { A€ My (C) | At = A A% = A rank(A) = k}
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Breaking the momentum torus

Q Finite area

@ Open boundary conditions

© Boundary between two phases
© Quasicrystals
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Breaking the momentum torus

Q@ Finite area

@ Open boundary conditions

© Boundary between two phases
© Quasicrystals

@ Disorder

Q@ Defects

A few of these can be handled with periodic boundary conditions (flux
torus/twisted boundary conditions, Bott index).

4/21



Quasicrystalline Chern insulator
Aperiodic Ammann-Beenker tiling.

“px + ipy," tight binding model
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Quasicrystalline Chern insulator
Aperiodic Ammann-Beenker tiling.

“px + ipy," tight binding model

Fulga, I. C., Pikulin, D. I. and TL. “Aperiodic Weak Topological Superconductors.”
Physical Review Letters 116.25 (2016): 257002.
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Quasicrystalline Chern insulator
Aperiodic Ammann-Beenker tiling.

For Chern number —1:

For Chern number 0:

p=1,t=1A=2

“px + ipy," tight binding model

HQci
Hj = —uo,

i i ,
Hjx = —to, — EAO'X cos(ajx) — EAO'}, sin(ajy)

Fulga, I. C., Pikulin, D. I. and TL. “Aperiodic Weak Topological Superconductors.”
Physical Review Letters 116.25 (2016): 257002.
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Gapped and ungapped by location

Set constants for Chern number
-1 on the left (black vertices).

Set constants for Chern number
0 on the right (red vertices).

The units indicated define posi-
tion operators X and Y. Us-
ing Dirichlet boundary condi-
tions (just compress).
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Gapped and ungapped by location

Set constants for Chern number
-1 on the left (black vertices).

Set constants for Chern number
0 on the right (red vertices).

The units indicated define posi-
tion operators X and Y. Us-
ing Dirichlet boundary condi-
tions (just compress).
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/ / / Kitaev: How can we described

gapped
gapped gapped and gapless using the
apless same Hilbert space?

Kitaev, A. “K-theoretic classification of free-fermion Hamiltonians.” West Coast Op-
erator Algebra Seminar, Albuquerque, 2011.
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Topology from joint spectrum

Finite-area model summarized by three Hermitian matrices: X, Y, H.
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Topology from joint spectrum

Finite-area model summarized by three Hermitian matrices: X, Y, H.

Need || XH — HX]|| and || YH — HY|| both “small” so adjust units:

X ~>kX, Y ~xY
Joint approximate eigenvectors: ||[v|| =1 and A; € R with

1
(||Xv — /\1v||2 +||Yv— /\2v||2 + ||Hv — /\3VH2) 2

small. Look for local minima?
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Topology from joint spectrum
If we set

QuX, Y H) = (X =A%+ (Y = A2)? + (H — A3)?

then

Nl=
NI

min (| Xv — A1v|[2+]| Yv — Av|?+[|Hv — Asv|]?)

lv]=1 = (Omin(QU(X, Y, H))2.

Notation: opmin(B) is the smallest singular value of a matrix.
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Topology from joint spectrum
If we set

QuX, Y H) = (X =A%+ (Y = A2)? + (H — A3)?

then

Nl
NI

HmHin1(||Xv — Mv [P+ Yv = Aav| P+ Hv = A3v[|?) 2 = (min(Qa (X, Y, H))
vi|=
Notation: opmin(B) is the smallest singular value of a matrix.

Def. The quadratic spectrum of a triple (X, Y, H) of Hermitian matrices
is the set

AQX, Y, H) = {A € R | Omin(Qu(X, Y, H) =0}
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Quadratic joint spectrum

Def. The quadratic spectrum of a triple (X, Y, H) of Hermitian matrices
is the set

AQX, Y, H) = {A € R® | 0in(Qa(X, Y, H) =0}

Too often, this is the empty set.
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Quadratic joint spectrum

Def. The quadratic spectrum of a triple (X, Y, H) of Hermitian matrices
is the set

AQX, Y, H) = {A € R® | 0in(Qa(X, Y, H) =0}
Too often, this is the empty set.
A partial fix:

Def. The quadratic pseudospectrum of a triple (X, Y, H) of Hermitian
matrices is based on the function

ST

A= (Tmin (@A (X, Y, H)))

o AQ(X,Y,H) = {)\ € R3 ‘ (Crmin (Qu(X, Y, H)))? < e}
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Clifford joint spectrum

Define “the localizer”

LaX, Y H) = (X=A1) @0x+ (Y —A2) @0y + (H—A3) ®0,
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P AX Y H) = (AR omin(Ly(X, Y, H)) < e}
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A “sphere” emerges

Separate Hilbert space for bulk
and boundary:

Energy
Energy

Bulk Boundary
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A “sphere” emerges

Separate Hilbert space for bulk
and boundary:

o (<))
— -
(] (]
C C
: . :
Bulk Boundary

Same Hilbert space, bulk and
boundary (slice at fixed-y),
Ae(X, Y, H):

B —————

Position

Energy

11/21



Separate Hilbert space for bulk
and boundary:
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Bulk

A “sphere” emerges

Energy

Boundary

Same Hilbert space, bulk and

boundary (slice at fixed-y),

Ae(X, Y, H):

Energy

ATEETEE T Square sample with quasiperiodic

_ >

Position

Chern insulator on all of sample.
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A “sphere” emerges

Square sample with quasiperiodic Chern insulator everywhere.

0.5

Ae(X, Y, H)
for e = 0.02

0.45
0.4
0.35
0.3
0.25
0.2

0.15

0.1

Energy

0.05

‘\' -0.5 -0 —~
XpOSItlon \\QQSQ\\Q‘\ cmin(LA()g,Y,H)
A= (X,y,E)
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Chern insulator on the left, trivial
insulator on the right.
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K-theory

Consider this topological space
M= Ao1(X,Y,H)
and the C*-algebra C(M).
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K-theory
Consider this topological space
M= Ao1(X,Y,H)

and the C*-algebra C(M). This has “the same” K-theory as a sphere,
with the interesting element represented by

z (x+5)—1iy
(x+5)+iy —z
For conventional picture of K-theory: spectrally flatten; take a formal
difference.

L(x,y, z) = € My(C(M)).
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K-theory
Consider this topological space
M= Ao1(X,Y,H)

and the C*-algebra C(M). This has “the same” K-theory as a sphere,
with the interesting element represented by
_ z (45—
L(Xy}/yz)_{(x+5)+ly —z
For conventional picture of K-theory: spectrally flatten; take a formal
difference.

y ] € My(C(M)).

Ugly math defines an approximate homomorphism C(M) — My (C)
with x — X, y — Y, z — H. Applying this to K-theory we get

L(—5,0,0)(X, Y, H) = [ (X+S+iY (X+_52_,_ v } € Myy(C)
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K-theory
Consider this topological space
M= Ao1(X,Y,H)

and the C*-algebra C(M). This has “the same” K-theory as a sphere,
with the interesting element represented by
_ z (45—
L(Xy}/yz)_{(x+5)+ly —z
For conventional picture of K-theory: spectrally flatten; take a formal
difference.

y ] € My(C(M)).

Ugly math defines an approximate homomorphism C(M) — My (C)
with x — X, y — Y, z — H. Applying this to K-theory we get

L(—5,0,0)(X, Y, H) = [ (X+S+iY (X+_52_,_ v } € Myy(C)

Where this sits in Ko(Mp(C)) = Z can be done on a computer,

[L(,E,VO’O) (XY, H)] — %sig (L(,5’0’0)(X, Y, H))
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A Local Index

We obtain a local index for a finite system, which can be centered at any
point not in A(X, Y, H),

ind, (X, Y, H) = %Sig(LA (X, Y, H))

Omin (La (X, Y, H)) large means more protection by the local index.
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A Local Index

We obtain a local index for a finite system, which can be centered at any
point not in A(X, Y, H),

ind, (X, Y, H) = %Sig(LA (X, Y, H))

Omin (La (X, Y, H)) large means more protection by the local index.
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Quantifying topological protection of bulk points

=ind, (X, Y, H+AH)

X, Y, H)

(

|AH|| < Omin(LA(X, Y, H)) = ind,

A)
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Quantifying protection of boundary states

Assume ind(, o 0)(X, Y, H) does
not equal ind(,, , 0)(X, Y, H).
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Quantifying protection of boundary states

Assume ind (o ) (X, Y, H) does
not equal ind(xlyylyo)(X, Y,H).

Also assume

[AH] < Gmin(L(x;,y;,0) (X, Y, H)).

(X1:%)
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Quantifying protection of boundary states

Assume ind (o ) (X, Y, H) does
not equal ind,, , 0)(X, Y, H).

Also assume

||AH|| < O'min(L(xj,yj,O) (X’ Y’ H)) (>0 %)

(X1 %)

This means

L(Xt,}/tyo) (X, Y,H+ AH)

has an eigenvalue cross from
positive to negative.




Quantifying protection of boundary states

Assume ind (o ) (X, Y, H) does
not equal ind,, , 0)(X, Y, H).

Also assume

||AH|| < O'min(L(xj,yj,O) (X’ Y’ H)) (>0 %)

(X1 %)

This means

L(Xt,}/tyo) (X, Y,H+ AH)

has an eigenvalue cross from
positive to negative.

Thus there is a point p on the line
with g € A(X, Y, H).




Quantifying protection of boundary states

Assume ind o 0)(X, YL H) #ind 00 (X, Y. H).
Also assume, for j = 0,1,
[AH| < Tmin(Liyy;,0) (X, Y. H)).

We have proven there is a unit vector v with
(IXv =xev[2+[|Yv — yev > +[|Hv — 0v|]?)

Nl

less than some specific bound.

(Xo:¥%) (X1 %)
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Other places localizer has been used
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Other places localizer has been used

@ 1D systems, class BDI.
@ Weak topological insulators in 2D, class D.
@ Disordered semimetals.
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